Exploring halide anion affinities to native cyclodextrins by mass spectrometry and molecular modelling
The binding affinities of cyclodextrins complexation with chlorine (Cl−), bromine (Br−) and iodine (I−), were measured by mass spectrometric titrimetry, and the fitting of the binding constants was based on the concentration measurement of the cyclodextrin equilibrium. The binding constants (lg Ka)...
Gespeichert in:
Veröffentlicht in: | European journal of mass spectrometry (Chichester, England) England), 2018-06, Vol.24 (3), p.268-278 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The binding affinities of cyclodextrins complexation with chlorine (Cl−), bromine (Br−) and iodine (I−), were measured by mass spectrometric titrimetry, and the fitting of the binding constants was based on the concentration measurement of the cyclodextrin equilibrium. The binding constants (lg Ka) for α-, β- or γ-cyclodextrin with Cl− were 3.99, 4.03 and 4.11, respectively. The gas-phase binding affinity of halide anions for native cyclodextrins was probed by collision-induced dissociation. In collision-induced dissociation, the centre-of-mass frame energy results revealed that in the gas phase, for the same type of cyclodextrin, the stability of the complexes decreased in order: Cl > Br > I, and for the same halide anion, the binding stability of the complex with α-, β- or γ-cyclodextrin decreased in the order: γ-cyclodextrin >β-cyclodextrin > α-cyclodextrin. The density functional theory calculations showed that halide anion binding on the primary face had a lower energy than the secondary face and hydrogen bonding was the main driving force for complex formation. The higher stability of the γ-cyclodextrin complex with the Cl anion can be attributed to the higher charge density of the Cl anion and better flexibility of γ-cyclodextrin. |
---|---|
ISSN: | 1469-0667 1751-6838 |
DOI: | 10.1177/1469066717748658 |