Ascorbyl stearate and ionizing radiation potentiate apoptosis through intracellular thiols and oxidative stress in murine T lymphoma cells

Ascorbyl stearate (Asc-s) is a derivative of ascorbic acid with better anti-tumour efficacy compared to its parent compound ascorbic acid. In this study, we have examined radio-sensitizing effect of Asc-s in murine T cell lymphoma (EL4) cells at 4 Gy. Asc-s and radiation treatment reduced cell proli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemico-biological interactions 2018-02, Vol.281, p.37-50
Hauptverfasser: Mane, Shirish D., Kamatham, Akhilender Naidu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ascorbyl stearate (Asc-s) is a derivative of ascorbic acid with better anti-tumour efficacy compared to its parent compound ascorbic acid. In this study, we have examined radio-sensitizing effect of Asc-s in murine T cell lymphoma (EL4) cells at 4 Gy. Asc-s and radiation treatment reduced cell proliferation, induced apoptosis in a dose dependent manner by arresting the cells at S/G2-M phase of cell cycle. It also decreased the frequency of cancer stem cells per se, with significantly higher decrease in combination with radiation treatment./Further, Asc-s and radiation treatment increased the level of reactive oxygen species (ROS), drop in mitochondrial membrane potential (MMP) and increased caspase-3 activity resulting in apoptosis of EL4 cells. Further it also significantly decreased GSH/GSSG ratio due to binding of Asc-s with thiols. The increase in oxidative stress induced by Asc-s and radiation treatment was abrogated by thiol antioxidants in EL4 cells. Interestingly, this redox modulation triggered significant increase in protein glutathionylation in a time dependent manner. Asc-s treatment resulted in glutathionylation of IKK, p50-NF-kB and mutated p53, thereby inhibiting cancer progression during oxidative stress. Asc-s quenches GSH ensuing Asc-s + GSH adduct thereby further modulating GSH/GSSG ratio as evident from HPLC and docking studies. The anti-tumour effect of Asc-s along with radiation was studied by injecting EL4 cells in synegenicC57/BL6 male mice. Intraperitoneal injection of Asc-s followed by radiation exposure at 4 Gy to the tumour bearing mice resulted in radio-sensitization which is evident from significant regression of tumour as evident from tumour burden index. The survival study supports the data that Asc-s pre-treatment enhances radio-sensitization in murine lymphoma. Our data, suggest that Asc-s and ionizing radiation induced cell cycle arrest and apoptosis by perturbing redox balance through irreversible complexes of thiols with Asc-s, disturbed mitochondrial membrane permeability and activation of caspase-3 in EL4 cells. [Display omitted] •Asc-s induces apoptosis in EL-4 at micro molar range.•Asc-s+γ-radiation (4Gy) results in radio sensitization against EL-4 cells.•Asc-s+γ-radiation (4Gy) deplete GSH, ROS formation and MMP depolarization.•Asc-s+γ-radiation induce caspases-3 expression resulting in apoptosis.•Xenografted mice on Asc-s±γ-radiation (4Gy) treatment caused declined tumour burden.
ISSN:0009-2797
1872-7786
DOI:10.1016/j.cbi.2017.12.028