One-step prepared cobalt-based nanosheet as an efficient heterogeneous catalyst for activating peroxymonosulfate to degrade caffeine in water

[Display omitted] Two-dimensional (2D) planar cobalt-containing materials are promising catalysts for activating peroxymonosulfate (PMS) to degrade contaminants because 2D sheet-like morphology provides large reactive surfaces. However, preparation of these sheet-supported cobaltic materials typical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2018-03, Vol.514, p.272-280
Hauptverfasser: Lin, Kun-Yi Andrew, Lai, Hong-Kai, Tong, Shaoping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] Two-dimensional (2D) planar cobalt-containing materials are promising catalysts for activating peroxymonosulfate (PMS) to degrade contaminants because 2D sheet-like morphology provides large reactive surfaces. However, preparation of these sheet-supported cobaltic materials typically involves multiple steps and complex reagents, making them less practical for PMS activation. In this study, a cobalt-based nanosheet (CoNS) is particularly developed using a one-step hydrothermal process with a single reagent in water. The resulting CoNS can exhibit a thickness as thin as a few nanometers and 2-D morphology. CoNS is also primarily comprised of cobalt species in a coordinated form of Prussian Blue analogue, which consists of both Co3+ and Co2+. These features make CoNS promising for activating PMS in aqueous systems. As degradation of an emerging contaminant, caffeine, is selected as a representative reaction, CoNS not only successfully activates PMS to fully degrade caffeine in 20 min but also exhibits a much higher catalytic activity than the most common PMS activator, Co3O4. Via studying inhibitive effects of radical scavengers, caffeine degradation by CoNS-activated PMS is primarily attributed to sulfate radicals and hydroxyl radicals to a lesser extent. The degradation products of caffeine by CoNS-activated PMS are also identified and a potential degradation pathway is proposed. Moreover, CoNS could be also re-used to activate PMS for caffeine degradation without activity loss. These results indicate that CoNS is a conveniently prepared and highly effective and stable 2-D catalyst for aqueous chemical oxidation reactions.
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2017.12.040