New Ligand Design Provides Delocalization and Promotes Strong Absorption throughout the Visible Region in a Ru(II) Complex
The new Ru(II)–anthraquinone complex [Ru(bpy)2(qdpq)](PF6)2 (Ru-qdpq; bpy = 2,2′-bipyridine; qdpq = 2,3-di(2-pyridyl)naphtho[2,3-f]quinoxaline-7,12-quinone) possesses a strong 1MLCT Ru → qdpq absorption with a maximum at 546 nm that tails into the near-IR and is significantly red-shifted rela...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2018-01, Vol.140 (1), p.229-234 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The new Ru(II)–anthraquinone complex [Ru(bpy)2(qdpq)](PF6)2 (Ru-qdpq; bpy = 2,2′-bipyridine; qdpq = 2,3-di(2-pyridyl)naphtho[2,3-f]quinoxaline-7,12-quinone) possesses a strong 1MLCT Ru → qdpq absorption with a maximum at 546 nm that tails into the near-IR and is significantly red-shifted relative to that of the related complex [Ru(bpy)2(qdppz)](PF6)2 (Ru-qdppz; qdppz = naphtho[2,3-a]dipyrido[3,2-h:2′,3′-f]phenazine-5,18-dione), with λmax = 450 nm. Ru-qdppz possesses electronically isolated proximal and distal qdppz-based excited states; the former is initially generated and decays to the latter, which repopulates the ground state with τ = 362 ps. In contrast, excitation of Ru-qdpq results in the population of a relatively long-lived (τ = 19 ns) Ru(dπ) → qdpq(π*) 3MLCT excited state where the promoted electron is delocalized throughout the qdpq ligand. Ultrafast spectroscopy, used together with steady-state absorption, electrochemistry, and DFT calculations, indicates that the unique coordination modes of the qdpq and qdppz ligands impart substantially different electronic communication throughout the quinone-containing ligand, affecting the excited state and electron transfer properties of these molecules. These observations create a pathway to synthesize complexes with red-shifted absorptions that possess long-lived, redox-active excited states that are useful for various applications, including solar energy conversion and photochemotherapy. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.7b09389 |