Time dependent effect of gentamicin on enzymes of carbohydrate metabolism and terminal digestion in rat intestine

Gentamicin (GM) is an aminoglycoside antibiotic commonly used against life threatening gram negative bacterial infections, however, nephrotoxicity remains the major concern for its long term use. Although its effects on kidney are well characterized but there have been no studies regarding its effec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human & experimental toxicology 2007-07, Vol.26 (7), p.587-593
Hauptverfasser: Farooq, N., Priyamvada, S., Khan, F., Yusufi, A.N.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Gentamicin (GM) is an aminoglycoside antibiotic commonly used against life threatening gram negative bacterial infections, however, nephrotoxicity remains the major concern for its long term use. Although its effects on kidney are well characterized but there have been no studies regarding its effects on intestine. We hypothesize that GM causes adaptive coordinated effect on enzymes of carbohydrate metabolism and terminal digestion/ absorption in rat intestine. Rats were administerd a nephrotoxic dose of GM (80 mg /kg body weight) daily for 15 days and a time dependent effect was observed on various enzyme activities. Activities of lactate (LDH), malate (MDH) and isocitrate (ICDH) dehydrogenases, significantly increased and peaked at different time intervals of GM treatment. Whereas LDH activity remained higher, MDH and ICDH activity slowly declined from their peak values. Activities of fructose-1,6-bisphosphatase, glucose-6-phosphatase and glucose-6-phosphate dehydrogenase increased but malic enzyme decreased in a time dependent manner. Activity of alkaline phosphatase and sucrase significantly increased but γ-glutamyl transpeptidase activity decreased. GM administration increased lipid peroxidation, glutathione peroxidase but decreased superoxide dismutase and catalase activities. The results indicate that GM treatment selectively upregulated certain enzymes of carbohydrate metabolism and terminal digestion/absorption and perturbed antioxidant defenses. Human & Experimental Taxicology, (2007) 26, 587—593.
ISSN:0960-3271
1477-0903
DOI:10.1177/09603271079544