In vitro anti-tumour and cyto-selective effects of coumarin-3-carboxylic acid and three of its hydroxylated derivatives, along with their silver-based complexes, using human epithelial carcinoma cell lines
The chemotherapeutic potential of coumarin-3-carboxylic acid (C-3-COOH) and a series of three hydroxylated coumarin-3-carboxylic acid ligands, namely 6-hydroxy-coumarin-3-carboxylic acid (6-OH-C-3-COOH), 7-hydroxy-coumarin-3-carboxylic acid (7-OH-C-3-COOH) and 8-hydroxy-coumarin-3-carboxylic acid (8...
Gespeichert in:
Veröffentlicht in: | Cancer letters 2007-04, Vol.248 (2), p.321-331 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The chemotherapeutic potential of coumarin-3-carboxylic acid (C-3-COOH) and a series of three hydroxylated coumarin-3-carboxylic acid ligands, namely 6-hydroxy-coumarin-3-carboxylic acid (6-OH-C-3-COOH), 7-hydroxy-coumarin-3-carboxylic acid (7-OH-C-3-COOH) and 8-hydroxy-coumarin-3-carboxylic acid (8-OH-C-3-COOH), along with their corresponding silver-based complexes, namely 6-hydroxycoumarin-3-carboxylatosilver (6-OH-C-COO-Ag), 7-hydroxycoumarin-3-carboxylatosilver (7-OH-C-COO-Ag) and 8-hydroxycoumarin-3-carboxylatosilver (8-OH-C-COO-Ag), was determined using two human-derived carcinoma (A-498 and Hep-G2), along with two non-carcinoma human-derived cell lines (CHANG and HK-2). All of the ligands and their silver complexes induced a concentration-dependent cytotoxic effect. Furthermore, hydroxylation of C-3-COOH and its subsequent complexation with silver led to the production of a series of compounds with dramatically enhanced cytotoxicity, with 6-OH-C-3-COO-Ag having the greatest activity. Additionally, all of the metal-based complexes were selectively cytotoxic to both carcinoma-derived cell lines, relative to normal renal and hepatic cells. In comparative studies with cisplatin, and based on the IC
50 values obtained with Hep-G2 cells, it appeared that the coumarin–silver complexes were between 2 and 5.5 times more cytotoxic than cisplatin. All of the coumarin–silver complexes inhibited DNA synthesis, which did not appear to be mediated through intercalation. Furthermore, results obtained from Ames tests showed that all of the test agents and their phase I metabolites were non-mutagenic. Taken together, these findings suggest that both hydroxylation particularly in the 6th position and complexation with silver, served to significantly augment the cytotoxic properties of C-3-COOH, to yield a compound which acts as a cyto-selective agent, as it is a significant killer of cancer, relative to normal cells. We suggest that this group of compounds may have a therapeutic role to play in the successful treatment and management of cancer in man. |
---|---|
ISSN: | 0304-3835 1872-7980 |
DOI: | 10.1016/j.canlet.2006.08.009 |