Thin-Film Nanocomposite Membrane with the Minimum Amount of MOF by the Langmuir–Schaefer Technique for Nanofiltration
An innovative procedure for positioning a monolayer of hydrophilic metal organic framework (MOF) MIL-101(Cr) (MIL, Materials of Institute Lavoisier) nanoparticles (NPs) in thin-film nanocomposite (TFN) membranes has been implemented by transferring a Langmuir–Schaefer (LS) film of the MOF in betwee...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2018-01, Vol.10 (1), p.1278-1287 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An innovative procedure for positioning a monolayer of hydrophilic metal organic framework (MOF) MIL-101(Cr) (MIL, Materials of Institute Lavoisier) nanoparticles (NPs) in thin-film nanocomposite (TFN) membranes has been implemented by transferring a Langmuir–Schaefer (LS) film of the MOF in between the polyamide thin layer at the top and the cross-linked asymmetric polyimide (P84) support at the bottom. The presence and layout of the LS-MIL-101(Cr) monolayer in the TFN membrane was confirmed by scanning transmission electron microscopy imaging with a high-angle annular dark-field detector images and X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, electron energy loss spectroscopy, and atomic force microscopy analyses. This methodology requires the smallest amount of MOF reported to date, 3.8 μg cm–2, and promotes the formation of a defect-free ultrathin MOF film. Although conventional TFN membranes tend to show MOF agglomerates that could contribute to the formation of unselective defects, LS-TFN membranes, characterized by a homogeneous and continuous MOF coating, exhibit an optimal membrane performance, without a significant decrease in selectivity. Outstanding methanol permeances, one of the best results reported to date, of 10.1 ± 0.5 L m–2 h–1 bar–1 when filtering sunset yellow and of 9.5 ± 2.1 L m–2 h–1 bar–1 when filtering rose bengal have been achieved in LS-TFN membranes with a rejection higher than 90% in all cases. Methanol permeates through the polyamide and the LS-MIL-101(Cr) monolayer, greatly enhanced by the MOF pore system, in comparison to thin-film composite and conventional TFN membranes (7.5 ± 0.7 and 7.7 ± 1.1 L m–2 h–1 bar–1 when filtering sunset yellow), respectively, in which polyamide areas free of MOF NPs are present. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.7b17477 |