Single-axis rotation/azimuth-motion insulation inertial navigation control system with FOGs

Rotation modulation technology could effectively improve the accuracy of the inertial navigation system (INS) by compensating for the biases of the inertial sensors automatically. However, the carrier angular motion and rotation control error could reduce the rotation modulation effect and then decr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2017-12, Vol.25 (25), p.30956-30975
Hauptverfasser: Wang, Lingcao, Li, Kui, Chen, Yuanpei, Liu, Juncheng, Xu, Yanchun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rotation modulation technology could effectively improve the accuracy of the inertial navigation system (INS) by compensating for the biases of the inertial sensors automatically. However, the carrier angular motion and rotation control error could reduce the rotation modulation effect and then decrease the navigation accuracy. To address this problem, for the single-axis rotation INS, a novel rotation control scheme is presented. The control scheme employs the fiber optic gyros to control the inertial measurement unit (IMU) rotation angular velocity so that the INS with both rotation modulation and azimuth motion insulation functions. Furthermore, in order to reduce the control error, this study adopts two ways: optimizing the control strategy and shortening the delay time. The former way is to control the IMU rotating about the z-axis of the platform frame with respect to the navigation frame, rather than the up-axis of the navigation frame. The latter way is to apply interrupt mode rather than inquiry mode to complete the data transfer between the navigation and the control processors. The simulation and experimental results demonstrate that: the proposed method would not only realize the rotation modulation of the biases of the inertial sensors, but also achieve the insulation of the azimuth motion. The steady-state control error of the control system is less than 10" and the overshoot control error is less than 50". Compared to the traditional SRINS, the navigation position error in the single-axis rotation/azimuth-motion insulation INS could reduce 50% in some navigation application.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.25.030956