Inactivation of Escherichia coli K-12 Exposed to Pressures in Excess of 300 MPa in a High-Pressure Homogenizer

Homogenization is used widely in the dairy industry to improve product stability and quality. High-pressure homogenization (HPH) of fluid foods up to pressures of 300 MPa has demonstrated excellent potential for microbial inactivation. Microbial inactivation can be enhanced during HPH with the inclu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of food protection 2007-04, Vol.70 (4), p.1007-1010
Hauptverfasser: Taylor, T.M, Roach, A, Black, D.G, Davidson, P.M, Harte, F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Homogenization is used widely in the dairy industry to improve product stability and quality. High-pressure homogenization (HPH) of fluid foods up to pressures of 300 MPa has demonstrated excellent potential for microbial inactivation. Microbial inactivation can be enhanced during HPH with the inclusion of antimicrobial compounds. Escherichia coli K-12 cells, grown statically or in chemostat, were exposed to HPH processing pressures of 50 to 350 MPa in the absence or presence of the antimicrobial nisin. Valve temperature was regulated by a water bath and pressure, and temperature data were recorded continuously after process initiation. Survivors were enumerated via plating on nonselective growth media. Pressure and temperature at the valve outlet port exhibited a quadratic relationship (R2 = 0.9617, P < 0.05). Significant HPH-induced inactivation of the gram-negative microorganism was observed in the range of 100 to 250 MPa. Above 300 MPa, heat was the main factor promoting microbial inactivation, regardless of whether cells were grown in chemostat or statically. Chemostat-grown cells were significantly (P < 0.05) more resistant to HPH processing than were statically grown cells. Data indicate potential synergistic effects of nisin and HPH on the inactivation of bacterial contaminants. This study represents the first report of inactivation of a bacterium with HPH pressures in excess of 300 MPa in the presence and absence of an antimicrobial.
ISSN:0362-028X
1944-9097
DOI:10.4315/0362-028X-70.4.1007