Mutual Interaction of Phenolic Compounds and Microbiota: Metabolism of Complex Phenolic Apigenin‑C- and Kaempferol‑O‑Derivatives by Human Fecal Samples

Human colonic bacteria have an important impact on the biotransformation of flavonoid glycosides and their conversion can result in the formation of bioactive compounds. However, information about the microbial conversion of complex glycosylated flavonoids and the impact on the gut microbiota are st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2018-01, Vol.66 (2), p.485-497
Hauptverfasser: Vollmer, Maren, Esders, Selma, Farquharson, Freda M, Neugart, Susanne, Duncan, Sylvia H, Schreiner, Monika, Louis, Petra, Maul, Ronald, Rohn, Sascha
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Human colonic bacteria have an important impact on the biotransformation of flavonoid glycosides and their conversion can result in the formation of bioactive compounds. However, information about the microbial conversion of complex glycosylated flavonoids and the impact on the gut microbiota are still limited. In this study, in vitro fermentations with selected flavonoid O- and C-glycosides and three different fecal samples were performed. As a result, all flavonoid glycosides were metabolized via their aglycones yielding smaller substances. Main metabolites were 3-(4-hydroxyphenyl)­propionic acid, 3-phenylpropionic acid, and phenylacetic acid. Differences in the metabolite formation due to different time courses between the donors were determined. Therefore, from all fermentations, the ones with a specific donor were always slower resulting in a lower number of metabolites compared to the others. For example, tiliroside was totally degraded from 0 h (105 ± 13.2 μM) within the first 24 h, while in the fermentations with fecal samples from other donors, tiliroside (107 ± 52.7 μM at 0 h) was not detected after 7 h anymore. In general, fermentation rates of C-glycosides were slower compared to the fermentation rates of O-glycosides. The O-glycoside tiliroside was degraded within 4 h while the gut microbiota converted the C-glycoside vitexin within 13 h. However, significant changes (p < 0.05) in the microbiota composition and short chain fatty acid levels as products of carbohydrate fermentation were not detected between incubations with different phenolic compounds. Therefore, microbiota diversity was not affected and a significant prebiotic effect of phenolic compounds cannot be assigned to flavonoid glycosides in food-relevant concentrations.
ISSN:0021-8561
1520-5118
DOI:10.1021/acs.jafc.7b04842