Assessment the accuracy of dose calculation in build-up region for two radiotherapy treatment planning systems

Our objective is to quantify dose calculation accuracy in the build-up region using TiGRT and Prowess Panther treatment planning systems (TPSs). Thermoluminescent dosimeter-100 chips were used in a phantom for dose measurement. TiGRT Version 1.2 (LinaTech, Sunnyvale, CA, USA) and Prowess Panther ver...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cancer research and therapeutics 2017-10, Vol.13 (6), p.968-973
Hauptverfasser: Farhood, Bagher, Bahreyni Toossi, Mohammad Taghi, Ghorbani, Mahdi, Salari, Elahe, Knaup, Courtney
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Our objective is to quantify dose calculation accuracy in the build-up region using TiGRT and Prowess Panther treatment planning systems (TPSs). Thermoluminescent dosimeter-100 chips were used in a phantom for dose measurement. TiGRT Version 1.2 (LinaTech, Sunnyvale, CA, USA) and Prowess Panther version 5.1 (Prowess Inc., Concord, CA, USA) TPSs were also used for dose calculations. Finally, the confidence limit values obtained to quantify dose calculation accuracy of the TPSs at build-up region for different field sizes and various gantry angles. For 8 cm × 10 cm, 10 cm × 10 cm, and 15 cm × 10 cm field sizes, the confidence limit values for TiGRT TPS were 16.64, 16.56, and 25.85; for Prowess TPS with fast photon effective (FPE) algorithm were 15.17, 14.22, and 9.73; and for Prowess TPS with collapsed cone convolution superposition (CCCS) algorithm were 10.53, 9.97, and 9.76, respectively. For wedged field with gantry angles of 15°, 30°, and 60°, the confidence limit values for TiGRT TPS were 12.11, 12.96, and 22.69 and for Prowess TPS with FPE algorithm were 24.50, 22.07, and 7.82, respectively. It is concluded that for open field sizes without gantry angulation, dose calculation accuracy in Prowess TPS with CCCS algorithm is better than TiGRT and Prowess TPSs with FPE algorithm. Furthermore, it is concluded that for wedged field with large gantry angle, dose calculation accuracy of Prowess TPS with FPE algorithm is better than TiGRT TPS while, for medium and small gantry angles, dose calculation accuracy of TiGRT TPS is better than Prowess TPS with FPE algorithm.
ISSN:0973-1482
1998-4138
DOI:10.4103/0973-1482.176421