Best-Matched Internal Standard Normalization in Liquid Chromatography–Mass Spectrometry Metabolomics Applied to Environmental Samples
The goal of metabolomics is to measure the entire range of small organic molecules in biological samples. In liquid chromatography–mass spectrometry-based metabolomics, formidable analytical challenges remain in removing the nonbiological factors that affect chromatographic peak areas. These factors...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2018-01, Vol.90 (2), p.1363-1369 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The goal of metabolomics is to measure the entire range of small organic molecules in biological samples. In liquid chromatography–mass spectrometry-based metabolomics, formidable analytical challenges remain in removing the nonbiological factors that affect chromatographic peak areas. These factors include sample matrix-induced ion suppression, chromatographic quality, and analytical drift. The combination of these factors is referred to as obscuring variation. Some metabolomics samples can exhibit intense obscuring variation due to matrix-induced ion suppression, rendering large amounts of data unreliable and difficult to interpret. Existing normalization techniques have limited applicability to these sample types. Here we present a data normalization method to minimize the effects of obscuring variation. We normalize peak areas using a batch-specific normalization process, which matches measured metabolites with isotope-labeled internal standards that behave similarly during the analysis. This method, called best-matched internal standard (B-MIS) normalization, can be applied to targeted or untargeted metabolomics data sets and yields relative concentrations. We evaluate and demonstrate the utility of B-MIS normalization using marine environmental samples and laboratory grown cultures of phytoplankton. In untargeted analyses, B-MIS normalization allowed for inclusion of mass features in downstream analyses that would have been considered unreliable without normalization due to obscuring variation. B-MIS normalization for targeted or untargeted metabolomics is freely available at https://github.com/IngallsLabUW/B-MIS-normalization. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/acs.analchem.7b04400 |