Adenovirus-mediated interleukin-12 gene transfer combined with cytosine deaminasefollowed by 5-fluorocytosine treatment exerts potent antitumor activity in Renca tumor-bearing mice
Background: Therapeutic gene transfer affords a clinically feasible and safe approach to cancer treatment but a more effective modality is needed to improve clinical outcomes. Combined transfer of therapeutic genes with different modes of actions may be a means to this end. Interleukin-12 (IL-12), a...
Gespeichert in:
Veröffentlicht in: | BMC cancer 2005-01, Vol.5 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background: Therapeutic gene transfer affords a clinically feasible and safe approach to cancer treatment but a more effective modality is needed to improve clinical outcomes. Combined transfer of therapeutic genes with different modes of actions may be a means to this end. Interleukin-12 (IL-12), a heterodimeric immunoregulatory cytokine composed of covalently linked p40 and p35 subunits, has antitumor activity in animal models. The enzyme/prodrug strategy using cytosine deaminase (CD) and 5-fluorocytosine (5-FC) has been used for cancer gene therapy. We have evaluated the antitumor effect of combining IL-12 with CD gene transfer in mice bearing renal cell carcinoma (Renca) tumors. Methods: Adenoviral vectors were constructed encoding one or both subunits of murine IL- 12 (Ad.p35, Ad.p40, and Ad.IL-12) or cytosine deaminase (Ad.CD). The functionality of the IL-12 or CD gene products expressed from these vectors was validated by splenic interferon (IFN)-gamma production or viability assays in cultured cells. Ad.p35 plus Ad.p40, or Ad.IL-12, with or without Ad.CD, were administered (single-dose) intratumorally to Renca tumor-bearing mice. The animals injected with Ad.CD also received 5-FC intraperitoneally. The antitumor effects were then evaluated by measuring tumor regression, mean animal survival time, splenic natural killer (NK) cell activity and IFN-gamma production. Results: The inhibition of tumor growth in mice treated with Ad.p35 plus Ad.p40 and Ad.CD, followed by injection of 5-FC, was significantly greater than that in mice treated with Ad.CD/5-FC, a mixture of Ad.p35 plus Ad.p40, or Ad.GFP (control). The combined gene transfer increased splenic NK cell activity and IFN-gamma production by splenocytes. Ad.CD/5-FC treatment significantly increased the antitumor effect of Ad.IL-12 in terms of tumor growth inhibition and mean animal survival time. Conclusions: The results suggest that adenovirus- mediated IL-12 gene transfer combined with Ad.CD followed by 5-FC treatment may be useful for treating cancers. |
---|---|
ISSN: | 1471-2407 |
DOI: | 10.1186/1471-2407-5-51 |