Structural Probing, Screening and Structure-Based Drug Repositioning Insights into the Identification of Potential Cox-2 Inhibitors from Selective Coxibs

The rate-limiting enzyme cyclooxygenase-2 (COX-2) is considered as an insightful prognostic target for non-small cell lung cancer (NSCLC) therapy. Now, administration and prolonged utilization of selective COX-2 inhibitors (COXIBs) towards moderating the NSCLC has been associated with different side...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Interdisciplinary sciences : computational life sciences 2019-06, Vol.11 (2), p.153-169
Hauptverfasser: Bommu, Uma Devi, Konidala, Kranthi Kumar, Pamanji, Rishika, Yeguvapalli, Suneetha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The rate-limiting enzyme cyclooxygenase-2 (COX-2) is considered as an insightful prognostic target for non-small cell lung cancer (NSCLC) therapy. Now, administration and prolonged utilization of selective COX-2 inhibitors (COXIBs) towards moderating the NSCLC has been associated with different side effects. In the present study, we focused on the structure-based drug repositioning approaches for predicting therapeutic potential de novo candidates for human COX-2. Due to discrepancies in the eminence of x-ray diffraction structures, creates a big barrier in drug discovery approach. Hence, the adaptable COX-2 structure was investigated using multi-template modeling method. Next, a dataset of twenty-six celebrex-associated optimized scaffolds were screened from ZINC database. Comparative docking approaches were then utilized to identify five compounds as best binders to the active site of COX-2 structures and strongly agree with enormous experimental consequences. MD simulations of regarded protein–ligand complexes reveals that lead molecules were stabilized dynamically in inside the cyclooxygenase site by forming potential salt bridges with Tyr 348 , Tyr 385 and Ser 530 residues. These significant results revealed that, identified druggables could prevent the tyrosyl radicals and prostaglandin production that reduces NSCLC progression. Furthermore, pharmacokinetics assets of respected ligands were analyzed, which incorporates similarity ensemble approach, druglikeness and ADMET properties. Finally, the identified novel candidates could serve as COX-2 inhibitors for NSCLC therapy, and coxibs are the best choices for designing new scaffolds to treat cyclooxygenases regard disorders.
ISSN:1913-2751
1867-1462
DOI:10.1007/s12539-017-0244-5