Tracking variations of fluorescent dissolved organic matter during wastewater treatment by accumulative fluorescence emission spectroscopy combined with principal component, second derivative and canonical correlation analyses

Accumulative fluorescence emission (AFE) spectroscopy combined with principal component analysis (PCA), second derivative and canonical correlation analysis (CCA) was firstly developed into an available tool to track variations in dissolved organic matter (DOM) fractions and contents during wastewat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemosphere (Oxford) 2018-03, Vol.194, p.463-470
Hauptverfasser: Guo, Xujing, Yu, Huibin, Yan, Zongcheng, Gao, Hongjie, Zhang, Yizhang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Accumulative fluorescence emission (AFE) spectroscopy combined with principal component analysis (PCA), second derivative and canonical correlation analysis (CCA) was firstly developed into an available tool to track variations in dissolved organic matter (DOM) fractions and contents during wastewater treatment. Samples were collected from a wastewater treatment plant with a traditional anaerobic/anoxic/oxic (A2O) process. The AFE spectroscopy deduced from the sum of intensities along the excitation wavelengths of fluorescence excitation emission matrix (EEM), could distinctly track tyrosine-like, tryptophan-like, fulvic-like substances. The AFE spectroscopy with the PCA not only disaggregated DOM fractions into the tyrosine-like, tryptophan-like, microbial humic-like, fulvic-like and humic-like substances, but discriminated DOM fractions from the physical sedimentation, anaerobic/anoxic and oxic processes. Absolute areas of fluorescence components obtained by the second derivative AFF spectra had positive liner correlations with Fmax of the relevant components modeling from EEM-PARAFAC, especially the tryptophan-like (R2 = 0.95, p 
ISSN:0045-6535
1879-1298
DOI:10.1016/j.chemosphere.2017.12.023