Nitrogen-Deficient Graphitic Carbon Nitride with Enhanced Performance for Lithium Ion Battery Anodes

Graphitic carbon nitride (g-C3N4) behaving as a layered feature with graphite was indexed as a high-content nitrogen-doping carbon material, attracting increasing attention for application in energy storage devices. However, poor conductivity and resulting serious irreversible capacity loss were pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2017-12, Vol.11 (12), p.12650-12657
Hauptverfasser: Chen, Jingjing, Mao, Zhiyong, Zhang, Lexi, Wang, Dajian, Xu, Ran, Bie, Lijian, Fahlman, Bradley D
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Graphitic carbon nitride (g-C3N4) behaving as a layered feature with graphite was indexed as a high-content nitrogen-doping carbon material, attracting increasing attention for application in energy storage devices. However, poor conductivity and resulting serious irreversible capacity loss were pronounced for g-C3N4 material due to its high nitrogen content. In this work, magnesiothermic denitriding technology is demonstrated to reduce the nitrogen content of g-C3N4 (especially graphitic nitrogen) for enhanced lithium storage properties as lithium ion battery anodes. The obtained nitrogen-deficient g-C3N4 (ND-g-C3N4) exhibits a thinner and more porous structure composed of an abundance of relatively low nitrogen doping wrinkled graphene nanosheets. A highly reversible lithium storage capacity of 2753 mAh/g was obtained after the 300th cycle with an enhanced cycling stability and rate capability. The presented nitrogen-deficient g-C3N4 with outstanding electrochemical performances may unambiguously promote the application of g-C3N4 materials in energy-storage devices.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.7b07116