Size Effect on Lipid Nanocapsule-Mediated GLP‑1 Secretion from Enteroendocrine L Cells
L cells are enteroendocrine cells located throughout the gastrointestinal tract that secrete physiologically important peptides. The most characterized peptides secreted by L cells are the peptide YY (PYY) and the glucagon-like peptides 1 (GLP-1) and 2 (GLP-2). These peptides are released rapidly in...
Gespeichert in:
Veröffentlicht in: | Molecular pharmaceutics 2018-01, Vol.15 (1), p.108-115 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | L cells are enteroendocrine cells located throughout the gastrointestinal tract that secrete physiologically important peptides. The most characterized peptides secreted by L cells are the peptide YY (PYY) and the glucagon-like peptides 1 (GLP-1) and 2 (GLP-2). These peptides are released rapidly into the circulation after oral nutrient ingestion. Recently, lipid-based nanoparticles (NP) have been described as triggers for GLP-1 secretion by L cells. NP physicochemical properties play a key role in the NP–cell interaction, and drive NP cell internalization. We herein hypothesize that lipid-based NP with appropriate size would not only be able to deliver drugs into blood circulation but also act like endogenous ligands to stimulate GLP-1 secretion. We tested five different size (25, 50, 100, 150, and 200 nm) lipid nanocapsules (LNC) on murine L cells in vitro to confirm this hypothesis. Our study showed that GLP-1 secretion was induced only by the 200 nm size LNC, highlighting the importance of LNC particle size on the secretion of GLP-1 by L cells. The different formulations did not affect proglucagon mRNA expression, suggesting that there was not an increased GLP-1 synthesis. As a proof of concept, we further demonstrated in normoglycemic mice that 200 nm LNC administration increases GLP-1 levels by 4- and 3-fold compared to untreated control mice 60 and 180 min after the administration, respectively. Our study suggests that 200 nm LNC as a nanocarrier to encapsulate drug candidates and as a ligand to induce endogenous GLP-1 secretion might represent a promising strategy for type 2 diabetes mellitus treatment. |
---|---|
ISSN: | 1543-8384 1543-8392 |
DOI: | 10.1021/acs.molpharmaceut.7b00742 |