Four-Component Catalytic Machinery: Reversible Three-State Control of Organocatalysis by Walking Back and Forth on a Track
A three-component supramolecular walker system is presented where a two-footed ligand (biped) walks back and forth on a tetrahedral 3D track upon the addition and removal of copper(I) ions, respectively. The addition of N-methylpyrrolidine as a catalyst to the walker system generates a four-compone...
Gespeichert in:
Veröffentlicht in: | Inorganic chemistry 2018-04, Vol.57 (7), p.3579-3586 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A three-component supramolecular walker system is presented where a two-footed ligand (biped) walks back and forth on a tetrahedral 3D track upon the addition and removal of copper(I) ions, respectively. The addition of N-methylpyrrolidine as a catalyst to the walker system generates a four-component catalytic machinery, which acts as a three-state switchable catalytic ensemble in the presence of substrates for a conjugate addition. The copper(I)-ion-initiated walking process of the biped ligand on the track regulates the catalytic activity in three steps: ON versus int ON (intermediate ON) versus OFF. To establish the operation of the four-component catalytic machinery in a mixture of all constituents, forward and backward cycles were performed in situ illustrating that both the walking process and catalytic action are fully reversible and reproducible. |
---|---|
ISSN: | 0020-1669 1520-510X |
DOI: | 10.1021/acs.inorgchem.7b02703 |