NEUTRON FIELD MEASUREMENT OF P(35)+Be SOURCE USING THE MULTI-FOIL ACTIVATION METHOD
Neutron field from the p+Be interaction was investigated at the NPI CAS for a proton beam energy of 35 MeV and thick beryllium target. Broad neutron spectra at close source-to-sample distances were determined using the multi-foil activation technique. Two large sets of dosimetry foils containing the...
Gespeichert in:
Veröffentlicht in: | Radiation protection dosimetry 2018-08, Vol.180 (1-4), p.1-381 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Neutron field from the p+Be interaction was investigated at the NPI CAS for a proton beam energy of 35 MeV and thick beryllium target. Broad neutron spectra at close source-to-sample distances were determined using the multi-foil activation technique. Two large sets of dosimetry foils containing the Ni, Co, Au, In, Ti, Al, Y, Lu, Nb and Fe were irradiated at a distance of 74 mm at direct neutron beam axis and at a distance of 34 mm from beam axis. Supporting Monte-Carlo MCNPX calculations of the irradiation system were performed as well. From measured reaction rates, the neutron energy spectra at both positions were reconstructed employing the modified version of the SAND-II unfolding code and activation cross-section data from the EAF-2010 library. At the position of irradiated samples, the total fast neutron flux reaches the value up to 1010 cm-2 s-1, and the neutron field is utilizable for radiation hardness study and integral benchmark experiments within the International Fusion Material Irradiation Facility (IFMIF) program. |
---|---|
ISSN: | 0144-8420 1742-3406 |
DOI: | 10.1093/rpd/ncx249 |