Monolithic III-nitride photonic integration toward multifunctional devices
The multiple functionalities of III-nitride semiconductors enable the integration with different components into a multicomponent system with enhanced functions. Here, we propose to fabricate and characterize a monolithic InGaN photonic circuit of a transmitter, waveguide, and receiver on an III-nit...
Gespeichert in:
Veröffentlicht in: | Optics letters 2017-12, Vol.42 (23), p.4853-4856 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The multiple functionalities of III-nitride semiconductors enable the integration with different components into a multicomponent system with enhanced functions. Here, we propose to fabricate and characterize a monolithic InGaN photonic circuit of a transmitter, waveguide, and receiver on an III-nitride-on-silicon platform. Both the transmitter and the receiver, sharing identical InGaN/GaN multiple-quantum-well structures and fabrication procedures, work to emit light and detect light independently. The 8 μm wide and 200 μm long InGaN waveguide couples the modulated light from the transmitter and sends the guided light to the receiver, leading to the formation of an in-plane light transmission system. The induced photocurrent at the receiver is highly sensitive to the light output of the transmitter. Multi-dimensional light transmissions are experimentally demonstrated at 200 Mb/s. These multifunctional photonic circuits open feasible approaches to the development of III-nitride multicomponent systems with integrated functions for comprehensive applications in the visible region. |
---|---|
ISSN: | 0146-9592 1539-4794 |
DOI: | 10.1364/OL.42.004853 |