Top ten errors of statistical analysis in observational studies for cancer research

Observational studies using registry data make it possible to compile quality information and can surpass clinical trials in some contexts. However, data heterogeneity, analytical complexity, and the diversity of aspects to be taken into account when interpreting results makes it easy for mistakes t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical & translational oncology 2018-08, Vol.20 (8), p.954-965
Hauptverfasser: Carmona-Bayonas, A., Jimenez-Fonseca, P., Fernández-Somoano, A., Álvarez-Manceñido, F., Castañón, E., Custodio, A., de la Peña, F. A., Payo, R. M., Valiente, L. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 965
container_issue 8
container_start_page 954
container_title Clinical & translational oncology
container_volume 20
creator Carmona-Bayonas, A.
Jimenez-Fonseca, P.
Fernández-Somoano, A.
Álvarez-Manceñido, F.
Castañón, E.
Custodio, A.
de la Peña, F. A.
Payo, R. M.
Valiente, L. P.
description Observational studies using registry data make it possible to compile quality information and can surpass clinical trials in some contexts. However, data heterogeneity, analytical complexity, and the diversity of aspects to be taken into account when interpreting results makes it easy for mistakes to be made and calls for mastery of statistical methodology. Some questionable research practices that include poor analytical data management are responsible for the low reproducibility of some results; yet, there is a paucity of information in the literature regarding specific statistical pitfalls of cancer studies. In addition to proposing how to avoid or solve them, this article seeks to expose ten common problematic situations in the analysis of cancer registries: convenience, dichotomization, stratification, regression to the mean, impact of sample size, competing risks, immortal time and survivor bias, management of missing values, and data dredging.
doi_str_mv 10.1007/s12094-017-1817-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1975018963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1975018963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-dc9a0d640fb4a688eec9616ce166c5c914208ed0090fc1137bbab228a2c113393</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EoqXwA1iQR5aAz0mdeEQVX1IlBorEZjnOBVKlcfElSP33OGphZDmf7557h4exSxA3IER-SyCFzhIBeQJFLPqITUFpnaRiPj8-9CIr3ifsjGgt4lQBnLKJ1BIKJfMpe135Le-x4xiCD8R9zam3fUN942zLbWfbHTXEm477kjB8x52Pw0gNVYPEax-4s53DwAMS2uA-z9lJbVvCi8M7Y28P96vFU7J8eXxe3C0Tl2ZZn1ROW1GpTNRlZlVRIDqtQDkEpdzcacikKLASQovaAaR5WdpSysLK8ZfqdMau97nb4L8GpN5sGnLYtrZDP5ABnc8FFFqlEYU96oInClibbWg2NuwMCDO6NHuXJro0o0szxl8d4odyg9Xfxa-8CMg9QHHVfWAwaz-EKIf-Sf0BmC1_yw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1975018963</pqid></control><display><type>article</type><title>Top ten errors of statistical analysis in observational studies for cancer research</title><source>Springer Nature - Complete Springer Journals</source><creator>Carmona-Bayonas, A. ; Jimenez-Fonseca, P. ; Fernández-Somoano, A. ; Álvarez-Manceñido, F. ; Castañón, E. ; Custodio, A. ; de la Peña, F. A. ; Payo, R. M. ; Valiente, L. P.</creator><creatorcontrib>Carmona-Bayonas, A. ; Jimenez-Fonseca, P. ; Fernández-Somoano, A. ; Álvarez-Manceñido, F. ; Castañón, E. ; Custodio, A. ; de la Peña, F. A. ; Payo, R. M. ; Valiente, L. P.</creatorcontrib><description>Observational studies using registry data make it possible to compile quality information and can surpass clinical trials in some contexts. However, data heterogeneity, analytical complexity, and the diversity of aspects to be taken into account when interpreting results makes it easy for mistakes to be made and calls for mastery of statistical methodology. Some questionable research practices that include poor analytical data management are responsible for the low reproducibility of some results; yet, there is a paucity of information in the literature regarding specific statistical pitfalls of cancer studies. In addition to proposing how to avoid or solve them, this article seeks to expose ten common problematic situations in the analysis of cancer registries: convenience, dichotomization, stratification, regression to the mean, impact of sample size, competing risks, immortal time and survivor bias, management of missing values, and data dredging.</description><identifier>ISSN: 1699-048X</identifier><identifier>EISSN: 1699-3055</identifier><identifier>DOI: 10.1007/s12094-017-1817-9</identifier><identifier>PMID: 29218627</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Medicine ; Medicine &amp; Public Health ; Oncology ; Review Article</subject><ispartof>Clinical &amp; translational oncology, 2018-08, Vol.20 (8), p.954-965</ispartof><rights>Federación de Sociedades Españolas de Oncología (FESEO) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-dc9a0d640fb4a688eec9616ce166c5c914208ed0090fc1137bbab228a2c113393</citedby><cites>FETCH-LOGICAL-c344t-dc9a0d640fb4a688eec9616ce166c5c914208ed0090fc1137bbab228a2c113393</cites><orcidid>0000-0003-4592-3813 ; 0000-0002-1930-9660</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12094-017-1817-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12094-017-1817-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29218627$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carmona-Bayonas, A.</creatorcontrib><creatorcontrib>Jimenez-Fonseca, P.</creatorcontrib><creatorcontrib>Fernández-Somoano, A.</creatorcontrib><creatorcontrib>Álvarez-Manceñido, F.</creatorcontrib><creatorcontrib>Castañón, E.</creatorcontrib><creatorcontrib>Custodio, A.</creatorcontrib><creatorcontrib>de la Peña, F. A.</creatorcontrib><creatorcontrib>Payo, R. M.</creatorcontrib><creatorcontrib>Valiente, L. P.</creatorcontrib><title>Top ten errors of statistical analysis in observational studies for cancer research</title><title>Clinical &amp; translational oncology</title><addtitle>Clin Transl Oncol</addtitle><addtitle>Clin Transl Oncol</addtitle><description>Observational studies using registry data make it possible to compile quality information and can surpass clinical trials in some contexts. However, data heterogeneity, analytical complexity, and the diversity of aspects to be taken into account when interpreting results makes it easy for mistakes to be made and calls for mastery of statistical methodology. Some questionable research practices that include poor analytical data management are responsible for the low reproducibility of some results; yet, there is a paucity of information in the literature regarding specific statistical pitfalls of cancer studies. In addition to proposing how to avoid or solve them, this article seeks to expose ten common problematic situations in the analysis of cancer registries: convenience, dichotomization, stratification, regression to the mean, impact of sample size, competing risks, immortal time and survivor bias, management of missing values, and data dredging.</description><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Oncology</subject><subject>Review Article</subject><issn>1699-048X</issn><issn>1699-3055</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EoqXwA1iQR5aAz0mdeEQVX1IlBorEZjnOBVKlcfElSP33OGphZDmf7557h4exSxA3IER-SyCFzhIBeQJFLPqITUFpnaRiPj8-9CIr3ifsjGgt4lQBnLKJ1BIKJfMpe135Le-x4xiCD8R9zam3fUN942zLbWfbHTXEm477kjB8x52Pw0gNVYPEax-4s53DwAMS2uA-z9lJbVvCi8M7Y28P96vFU7J8eXxe3C0Tl2ZZn1ROW1GpTNRlZlVRIDqtQDkEpdzcacikKLASQovaAaR5WdpSysLK8ZfqdMau97nb4L8GpN5sGnLYtrZDP5ABnc8FFFqlEYU96oInClibbWg2NuwMCDO6NHuXJro0o0szxl8d4odyg9Xfxa-8CMg9QHHVfWAwaz-EKIf-Sf0BmC1_yw</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Carmona-Bayonas, A.</creator><creator>Jimenez-Fonseca, P.</creator><creator>Fernández-Somoano, A.</creator><creator>Álvarez-Manceñido, F.</creator><creator>Castañón, E.</creator><creator>Custodio, A.</creator><creator>de la Peña, F. A.</creator><creator>Payo, R. M.</creator><creator>Valiente, L. P.</creator><general>Springer International Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4592-3813</orcidid><orcidid>https://orcid.org/0000-0002-1930-9660</orcidid></search><sort><creationdate>20180801</creationdate><title>Top ten errors of statistical analysis in observational studies for cancer research</title><author>Carmona-Bayonas, A. ; Jimenez-Fonseca, P. ; Fernández-Somoano, A. ; Álvarez-Manceñido, F. ; Castañón, E. ; Custodio, A. ; de la Peña, F. A. ; Payo, R. M. ; Valiente, L. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-dc9a0d640fb4a688eec9616ce166c5c914208ed0090fc1137bbab228a2c113393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Oncology</topic><topic>Review Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carmona-Bayonas, A.</creatorcontrib><creatorcontrib>Jimenez-Fonseca, P.</creatorcontrib><creatorcontrib>Fernández-Somoano, A.</creatorcontrib><creatorcontrib>Álvarez-Manceñido, F.</creatorcontrib><creatorcontrib>Castañón, E.</creatorcontrib><creatorcontrib>Custodio, A.</creatorcontrib><creatorcontrib>de la Peña, F. A.</creatorcontrib><creatorcontrib>Payo, R. M.</creatorcontrib><creatorcontrib>Valiente, L. P.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical &amp; translational oncology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carmona-Bayonas, A.</au><au>Jimenez-Fonseca, P.</au><au>Fernández-Somoano, A.</au><au>Álvarez-Manceñido, F.</au><au>Castañón, E.</au><au>Custodio, A.</au><au>de la Peña, F. A.</au><au>Payo, R. M.</au><au>Valiente, L. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Top ten errors of statistical analysis in observational studies for cancer research</atitle><jtitle>Clinical &amp; translational oncology</jtitle><stitle>Clin Transl Oncol</stitle><addtitle>Clin Transl Oncol</addtitle><date>2018-08-01</date><risdate>2018</risdate><volume>20</volume><issue>8</issue><spage>954</spage><epage>965</epage><pages>954-965</pages><issn>1699-048X</issn><eissn>1699-3055</eissn><abstract>Observational studies using registry data make it possible to compile quality information and can surpass clinical trials in some contexts. However, data heterogeneity, analytical complexity, and the diversity of aspects to be taken into account when interpreting results makes it easy for mistakes to be made and calls for mastery of statistical methodology. Some questionable research practices that include poor analytical data management are responsible for the low reproducibility of some results; yet, there is a paucity of information in the literature regarding specific statistical pitfalls of cancer studies. In addition to proposing how to avoid or solve them, this article seeks to expose ten common problematic situations in the analysis of cancer registries: convenience, dichotomization, stratification, regression to the mean, impact of sample size, competing risks, immortal time and survivor bias, management of missing values, and data dredging.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>29218627</pmid><doi>10.1007/s12094-017-1817-9</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4592-3813</orcidid><orcidid>https://orcid.org/0000-0002-1930-9660</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1699-048X
ispartof Clinical & translational oncology, 2018-08, Vol.20 (8), p.954-965
issn 1699-048X
1699-3055
language eng
recordid cdi_proquest_miscellaneous_1975018963
source Springer Nature - Complete Springer Journals
subjects Medicine
Medicine & Public Health
Oncology
Review Article
title Top ten errors of statistical analysis in observational studies for cancer research
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T01%3A46%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Top%20ten%20errors%20of%20statistical%20analysis%20in%20observational%20studies%20for%20cancer%20research&rft.jtitle=Clinical%20&%20translational%20oncology&rft.au=Carmona-Bayonas,%20A.&rft.date=2018-08-01&rft.volume=20&rft.issue=8&rft.spage=954&rft.epage=965&rft.pages=954-965&rft.issn=1699-048X&rft.eissn=1699-3055&rft_id=info:doi/10.1007/s12094-017-1817-9&rft_dat=%3Cproquest_cross%3E1975018963%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1975018963&rft_id=info:pmid/29218627&rfr_iscdi=true