Top ten errors of statistical analysis in observational studies for cancer research
Observational studies using registry data make it possible to compile quality information and can surpass clinical trials in some contexts. However, data heterogeneity, analytical complexity, and the diversity of aspects to be taken into account when interpreting results makes it easy for mistakes t...
Gespeichert in:
Veröffentlicht in: | Clinical & translational oncology 2018-08, Vol.20 (8), p.954-965 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 965 |
---|---|
container_issue | 8 |
container_start_page | 954 |
container_title | Clinical & translational oncology |
container_volume | 20 |
creator | Carmona-Bayonas, A. Jimenez-Fonseca, P. Fernández-Somoano, A. Álvarez-Manceñido, F. Castañón, E. Custodio, A. de la Peña, F. A. Payo, R. M. Valiente, L. P. |
description | Observational studies using registry data make it possible to compile quality information and can surpass clinical trials in some contexts. However, data heterogeneity, analytical complexity, and the diversity of aspects to be taken into account when interpreting results makes it easy for mistakes to be made and calls for mastery of statistical methodology. Some questionable research practices that include poor analytical data management are responsible for the low reproducibility of some results; yet, there is a paucity of information in the literature regarding specific statistical pitfalls of cancer studies. In addition to proposing how to avoid or solve them, this article seeks to expose ten common problematic situations in the analysis of cancer registries: convenience, dichotomization, stratification, regression to the mean, impact of sample size, competing risks, immortal time and survivor bias, management of missing values, and data dredging. |
doi_str_mv | 10.1007/s12094-017-1817-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1975018963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1975018963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-dc9a0d640fb4a688eec9616ce166c5c914208ed0090fc1137bbab228a2c113393</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EoqXwA1iQR5aAz0mdeEQVX1IlBorEZjnOBVKlcfElSP33OGphZDmf7557h4exSxA3IER-SyCFzhIBeQJFLPqITUFpnaRiPj8-9CIr3ifsjGgt4lQBnLKJ1BIKJfMpe135Le-x4xiCD8R9zam3fUN942zLbWfbHTXEm477kjB8x52Pw0gNVYPEax-4s53DwAMS2uA-z9lJbVvCi8M7Y28P96vFU7J8eXxe3C0Tl2ZZn1ROW1GpTNRlZlVRIDqtQDkEpdzcacikKLASQovaAaR5WdpSysLK8ZfqdMau97nb4L8GpN5sGnLYtrZDP5ABnc8FFFqlEYU96oInClibbWg2NuwMCDO6NHuXJro0o0szxl8d4odyg9Xfxa-8CMg9QHHVfWAwaz-EKIf-Sf0BmC1_yw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1975018963</pqid></control><display><type>article</type><title>Top ten errors of statistical analysis in observational studies for cancer research</title><source>Springer Nature - Complete Springer Journals</source><creator>Carmona-Bayonas, A. ; Jimenez-Fonseca, P. ; Fernández-Somoano, A. ; Álvarez-Manceñido, F. ; Castañón, E. ; Custodio, A. ; de la Peña, F. A. ; Payo, R. M. ; Valiente, L. P.</creator><creatorcontrib>Carmona-Bayonas, A. ; Jimenez-Fonseca, P. ; Fernández-Somoano, A. ; Álvarez-Manceñido, F. ; Castañón, E. ; Custodio, A. ; de la Peña, F. A. ; Payo, R. M. ; Valiente, L. P.</creatorcontrib><description>Observational studies using registry data make it possible to compile quality information and can surpass clinical trials in some contexts. However, data heterogeneity, analytical complexity, and the diversity of aspects to be taken into account when interpreting results makes it easy for mistakes to be made and calls for mastery of statistical methodology. Some questionable research practices that include poor analytical data management are responsible for the low reproducibility of some results; yet, there is a paucity of information in the literature regarding specific statistical pitfalls of cancer studies. In addition to proposing how to avoid or solve them, this article seeks to expose ten common problematic situations in the analysis of cancer registries: convenience, dichotomization, stratification, regression to the mean, impact of sample size, competing risks, immortal time and survivor bias, management of missing values, and data dredging.</description><identifier>ISSN: 1699-048X</identifier><identifier>EISSN: 1699-3055</identifier><identifier>DOI: 10.1007/s12094-017-1817-9</identifier><identifier>PMID: 29218627</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Medicine ; Medicine & Public Health ; Oncology ; Review Article</subject><ispartof>Clinical & translational oncology, 2018-08, Vol.20 (8), p.954-965</ispartof><rights>Federación de Sociedades Españolas de Oncología (FESEO) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-dc9a0d640fb4a688eec9616ce166c5c914208ed0090fc1137bbab228a2c113393</citedby><cites>FETCH-LOGICAL-c344t-dc9a0d640fb4a688eec9616ce166c5c914208ed0090fc1137bbab228a2c113393</cites><orcidid>0000-0003-4592-3813 ; 0000-0002-1930-9660</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12094-017-1817-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12094-017-1817-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29218627$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carmona-Bayonas, A.</creatorcontrib><creatorcontrib>Jimenez-Fonseca, P.</creatorcontrib><creatorcontrib>Fernández-Somoano, A.</creatorcontrib><creatorcontrib>Álvarez-Manceñido, F.</creatorcontrib><creatorcontrib>Castañón, E.</creatorcontrib><creatorcontrib>Custodio, A.</creatorcontrib><creatorcontrib>de la Peña, F. A.</creatorcontrib><creatorcontrib>Payo, R. M.</creatorcontrib><creatorcontrib>Valiente, L. P.</creatorcontrib><title>Top ten errors of statistical analysis in observational studies for cancer research</title><title>Clinical & translational oncology</title><addtitle>Clin Transl Oncol</addtitle><addtitle>Clin Transl Oncol</addtitle><description>Observational studies using registry data make it possible to compile quality information and can surpass clinical trials in some contexts. However, data heterogeneity, analytical complexity, and the diversity of aspects to be taken into account when interpreting results makes it easy for mistakes to be made and calls for mastery of statistical methodology. Some questionable research practices that include poor analytical data management are responsible for the low reproducibility of some results; yet, there is a paucity of information in the literature regarding specific statistical pitfalls of cancer studies. In addition to proposing how to avoid or solve them, this article seeks to expose ten common problematic situations in the analysis of cancer registries: convenience, dichotomization, stratification, regression to the mean, impact of sample size, competing risks, immortal time and survivor bias, management of missing values, and data dredging.</description><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Oncology</subject><subject>Review Article</subject><issn>1699-048X</issn><issn>1699-3055</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EoqXwA1iQR5aAz0mdeEQVX1IlBorEZjnOBVKlcfElSP33OGphZDmf7557h4exSxA3IER-SyCFzhIBeQJFLPqITUFpnaRiPj8-9CIr3ifsjGgt4lQBnLKJ1BIKJfMpe135Le-x4xiCD8R9zam3fUN942zLbWfbHTXEm477kjB8x52Pw0gNVYPEax-4s53DwAMS2uA-z9lJbVvCi8M7Y28P96vFU7J8eXxe3C0Tl2ZZn1ROW1GpTNRlZlVRIDqtQDkEpdzcacikKLASQovaAaR5WdpSysLK8ZfqdMau97nb4L8GpN5sGnLYtrZDP5ABnc8FFFqlEYU96oInClibbWg2NuwMCDO6NHuXJro0o0szxl8d4odyg9Xfxa-8CMg9QHHVfWAwaz-EKIf-Sf0BmC1_yw</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Carmona-Bayonas, A.</creator><creator>Jimenez-Fonseca, P.</creator><creator>Fernández-Somoano, A.</creator><creator>Álvarez-Manceñido, F.</creator><creator>Castañón, E.</creator><creator>Custodio, A.</creator><creator>de la Peña, F. A.</creator><creator>Payo, R. M.</creator><creator>Valiente, L. P.</creator><general>Springer International Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4592-3813</orcidid><orcidid>https://orcid.org/0000-0002-1930-9660</orcidid></search><sort><creationdate>20180801</creationdate><title>Top ten errors of statistical analysis in observational studies for cancer research</title><author>Carmona-Bayonas, A. ; Jimenez-Fonseca, P. ; Fernández-Somoano, A. ; Álvarez-Manceñido, F. ; Castañón, E. ; Custodio, A. ; de la Peña, F. A. ; Payo, R. M. ; Valiente, L. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-dc9a0d640fb4a688eec9616ce166c5c914208ed0090fc1137bbab228a2c113393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Oncology</topic><topic>Review Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carmona-Bayonas, A.</creatorcontrib><creatorcontrib>Jimenez-Fonseca, P.</creatorcontrib><creatorcontrib>Fernández-Somoano, A.</creatorcontrib><creatorcontrib>Álvarez-Manceñido, F.</creatorcontrib><creatorcontrib>Castañón, E.</creatorcontrib><creatorcontrib>Custodio, A.</creatorcontrib><creatorcontrib>de la Peña, F. A.</creatorcontrib><creatorcontrib>Payo, R. M.</creatorcontrib><creatorcontrib>Valiente, L. P.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical & translational oncology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carmona-Bayonas, A.</au><au>Jimenez-Fonseca, P.</au><au>Fernández-Somoano, A.</au><au>Álvarez-Manceñido, F.</au><au>Castañón, E.</au><au>Custodio, A.</au><au>de la Peña, F. A.</au><au>Payo, R. M.</au><au>Valiente, L. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Top ten errors of statistical analysis in observational studies for cancer research</atitle><jtitle>Clinical & translational oncology</jtitle><stitle>Clin Transl Oncol</stitle><addtitle>Clin Transl Oncol</addtitle><date>2018-08-01</date><risdate>2018</risdate><volume>20</volume><issue>8</issue><spage>954</spage><epage>965</epage><pages>954-965</pages><issn>1699-048X</issn><eissn>1699-3055</eissn><abstract>Observational studies using registry data make it possible to compile quality information and can surpass clinical trials in some contexts. However, data heterogeneity, analytical complexity, and the diversity of aspects to be taken into account when interpreting results makes it easy for mistakes to be made and calls for mastery of statistical methodology. Some questionable research practices that include poor analytical data management are responsible for the low reproducibility of some results; yet, there is a paucity of information in the literature regarding specific statistical pitfalls of cancer studies. In addition to proposing how to avoid or solve them, this article seeks to expose ten common problematic situations in the analysis of cancer registries: convenience, dichotomization, stratification, regression to the mean, impact of sample size, competing risks, immortal time and survivor bias, management of missing values, and data dredging.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>29218627</pmid><doi>10.1007/s12094-017-1817-9</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4592-3813</orcidid><orcidid>https://orcid.org/0000-0002-1930-9660</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1699-048X |
ispartof | Clinical & translational oncology, 2018-08, Vol.20 (8), p.954-965 |
issn | 1699-048X 1699-3055 |
language | eng |
recordid | cdi_proquest_miscellaneous_1975018963 |
source | Springer Nature - Complete Springer Journals |
subjects | Medicine Medicine & Public Health Oncology Review Article |
title | Top ten errors of statistical analysis in observational studies for cancer research |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T01%3A46%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Top%20ten%20errors%20of%20statistical%20analysis%20in%20observational%20studies%20for%20cancer%20research&rft.jtitle=Clinical%20&%20translational%20oncology&rft.au=Carmona-Bayonas,%20A.&rft.date=2018-08-01&rft.volume=20&rft.issue=8&rft.spage=954&rft.epage=965&rft.pages=954-965&rft.issn=1699-048X&rft.eissn=1699-3055&rft_id=info:doi/10.1007/s12094-017-1817-9&rft_dat=%3Cproquest_cross%3E1975018963%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1975018963&rft_id=info:pmid/29218627&rfr_iscdi=true |