Top ten errors of statistical analysis in observational studies for cancer research

Observational studies using registry data make it possible to compile quality information and can surpass clinical trials in some contexts. However, data heterogeneity, analytical complexity, and the diversity of aspects to be taken into account when interpreting results makes it easy for mistakes t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical & translational oncology 2018-08, Vol.20 (8), p.954-965
Hauptverfasser: Carmona-Bayonas, A., Jimenez-Fonseca, P., Fernández-Somoano, A., Álvarez-Manceñido, F., Castañón, E., Custodio, A., de la Peña, F. A., Payo, R. M., Valiente, L. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Observational studies using registry data make it possible to compile quality information and can surpass clinical trials in some contexts. However, data heterogeneity, analytical complexity, and the diversity of aspects to be taken into account when interpreting results makes it easy for mistakes to be made and calls for mastery of statistical methodology. Some questionable research practices that include poor analytical data management are responsible for the low reproducibility of some results; yet, there is a paucity of information in the literature regarding specific statistical pitfalls of cancer studies. In addition to proposing how to avoid or solve them, this article seeks to expose ten common problematic situations in the analysis of cancer registries: convenience, dichotomization, stratification, regression to the mean, impact of sample size, competing risks, immortal time and survivor bias, management of missing values, and data dredging.
ISSN:1699-048X
1699-3055
DOI:10.1007/s12094-017-1817-9