Separation of Isotopes in Space and Time by Gas-Surface Atomic Diffraction

The separation of isotopes in space and time by gas-surface atomic diffraction is presented as a new means for isotopic enrichment. A supersonic beam of natural abundance neon is scattered from a periodic surface of methyl-terminated silicon, with the ^{20}Ne and ^{22}Ne isotopes scattering into uni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2017-10, Vol.119 (17), p.176001-176001, Article 176001
Hauptverfasser: Nihill, Kevin J, Graham, Jacob D, Sibener, S J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The separation of isotopes in space and time by gas-surface atomic diffraction is presented as a new means for isotopic enrichment. A supersonic beam of natural abundance neon is scattered from a periodic surface of methyl-terminated silicon, with the ^{20}Ne and ^{22}Ne isotopes scattering into unique diffraction channels. Under the experimental conditions presented in this Letter, a single pass yields an enrichment factor 3.50±0.30 for the less abundant isotope, ^{22}Ne, with extension to multiple passes easily envisioned. The velocity distribution of the incident beam is demonstrated to be the determining factor in the degree of separation between the isotopes' diffraction peaks. In cases where there is incomplete angular separation, the difference in arrival times of the two isotopes at a given scattered angle can be exploited to achieve complete temporal separation of the isotopes. This study explores the novel application of supersonic molecular beam studies as a viable candidate for separation of isotopes without the need for ionization or laser excitation.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.119.176001