Robust performance of a membrane bioreactor for removing antibiotic resistance genes exposed to antibiotics: Role of membrane foulants

Antibiotic resistance genes (ARGs) are an emerging concern in wastewater treatment plants (WWTPs), as dissemination of ARGs can pose a serious risk to human health. Few studies, however, have quantified ARGs in membrane bioreactors (MBRs), although MBRs have been widely used for both municipal and i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water research (Oxford) 2018-03, Vol.130, p.139-150
Hauptverfasser: Zhu, Yijing, Wang, Yayi, Zhou, Shuai, Jiang, Xuxin, Ma, Xiao, Liu, Chao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Antibiotic resistance genes (ARGs) are an emerging concern in wastewater treatment plants (WWTPs), as dissemination of ARGs can pose a serious risk to human health. Few studies, however, have quantified ARGs in membrane bioreactors (MBRs), although MBRs have been widely used for both municipal and industrial wastewater treatment. To reveal the capacity of MBRs for removal of ARGs and the response of membrane fouling after antibiotic exposure, five typical ARG subtypes (sulI, sulII, tetC, tetX and ereA) and int1 were quantified affiliated by systematic membrane foulants analysis in a laboratory-scale anoxic/aerobic membrane bioreactor (A/O-MBR). Sulfamethoxazole and tetracycline hydrochloride additions increased ARG abundances by 0.5–1.4 orders of magnitude in the activated sludge, while the ARG removal performance of the membrane module remained stable (or even increased with ARG absolute abundance in several cases), with the abundance of removed ARGs ranging from 0.6 to 5.6 orders of magnitude. Specifically, the distribution of ARGs in membrane foulants accounted for 13%–25% of the total absolute abundance of all tested MBR samples. Indeed, substantial fouling occurred after the antibiotic additions, with the mean concentrations of soluble microbial product (SMP) and extracellular polymeric substance (EPS) increasing by 340% and 220%, respectively, in a membrane fouling cycle; moreover, the contents of EPS and SMP in the membrane foulants were significantly correlated with the ARG absolute abundance of membrane foulants (p 
ISSN:0043-1354
1879-2448
DOI:10.1016/j.watres.2017.11.067