Tidally driven pore water exchange in offshore intertidal sandbanks: Part I. Field measurements

In recent years blooms of the toxic marine cyanobacteria Lyngbya majuscula have been frequently observed in a system of offshore intertidal sandbanks in Moreton Bay, Australia. Past research suggests that these blooms are linked to the presence of bio-available forms of iron. Using hydraulic and por...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Estuarine, coastal and shelf science coastal and shelf science, 2008-08, Vol.79 (1), p.121-132
Hauptverfasser: Gibbes, B., Robinson, C., Carey, H., Li, L., Lockington, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In recent years blooms of the toxic marine cyanobacteria Lyngbya majuscula have been frequently observed in a system of offshore intertidal sandbanks in Moreton Bay, Australia. Past research suggests that these blooms are linked to the presence of bio-available forms of iron. Using hydraulic and pore water chemistry data collected from a shore normal transect at an offshore bloom site, the role of tidally driven exchange as a potential mechanism for delivery of bio-available iron across the sediment–water interface was examined. Field data revealed a residual pore water flow system in the sandbank, with seawater entering the upper sandbank platform and discharging through the bank edge. Upward flow and elevated near-surface dissolved Fe(II) concentrations (>20 μM Fe(II) at −0.05 m depth) were measured simultaneously in the discharge zones at the sandbank edge. The measured concentrations were more than four times greater than concentrations previously shown to stimulate L. majuscula growth. These results suggest that the tidally driven exchange mechanism might be capable of delivering dissolved Fe(II) to sites within offshore intertidal sandbanks where blooms of L. majuscula have been observed. While the source of the iron was not identified, potential candidates are discussed. These findings have implications for the current conceptual model for L. majuscula blooms in offshore intertidal sandbanks within Moreton Bay. Further investigations are required to fully understand the role of tidally driven exchange in controlling the export of bio-available iron to coastal waters at the field site. In particular there is a need to better assess the link between the pore water flows and the geochemical reactions that might occur along the flow path.
ISSN:0272-7714
1096-0015
DOI:10.1016/j.ecss.2008.03.021