An AWG-based WDM-PON architecture employing WDM/TDMA transmission for upstream traffic with dynamic bandwidth allocation

In this article, we examine a candidate architecture for wavelength-division multiplexed passive optical networks (WDM-PONs) employing multiple stages of arrayed-waveguide gratings (AWGs). The network architecture provides efficient bandwidth utilization by using WDM for downstream transmission and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Photonic network communications 2008-06, Vol.15 (3), p.191-202
Hauptverfasser: Han, Kyeong-Eun, Yang, Won-Hyuk, Datta, Debasish, Kim, Young-Chon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, we examine a candidate architecture for wavelength-division multiplexed passive optical networks (WDM-PONs) employing multiple stages of arrayed-waveguide gratings (AWGs). The network architecture provides efficient bandwidth utilization by using WDM for downstream transmission and by combining WDM with time-division multiple access (TDMA) for upstream transmission. In such WDM-PONs, collisions may occur among upstream data packets transmitted simultaneously from different optical networking units (ONUs) sharing the same wavelength. The proposed MAC protocol avoids such collisions using a request/permit-based multipoint control protocol, and employs a dynamic TDMA-based bandwidth allocation scheme for upstream traffic, called minimum-guaranteed maximum request first (MG-MRF), ensuring a reasonable fairness among the ONUs. The entire MAC protocol is simulated using OPNET and its performance is evaluated in terms of queuing delay and bandwidth utilization under uniform as well as non-uniform traffic distributions. The simulation results demonstrate that the proposed bandwidth allocation scheme (MG-MRF) is able to provide high bandwidth utilization with a moderately low delay in presence of non-uniform traffic demands from ONUs.
ISSN:1387-974X
1572-8188
DOI:10.1007/s11107-007-0094-x