Machine Learning of Dynamic Electron Correlation Energies from Topological Atoms
We present an innovative method for predicting the dynamic electron correlation energy of an atom or a bond in a molecule utilizing topological atoms. Our approach uses the machine learning method Kriging (Gaussian Process Regression with a non-zero mean function) to predict these dynamic electron c...
Gespeichert in:
Veröffentlicht in: | Journal of chemical theory and computation 2018-01, Vol.14 (1), p.216-224 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 224 |
---|---|
container_issue | 1 |
container_start_page | 216 |
container_title | Journal of chemical theory and computation |
container_volume | 14 |
creator | McDonagh, James L Silva, Arnaldo F Vincent, Mark A Popelier, Paul L. A |
description | We present an innovative method for predicting the dynamic electron correlation energy of an atom or a bond in a molecule utilizing topological atoms. Our approach uses the machine learning method Kriging (Gaussian Process Regression with a non-zero mean function) to predict these dynamic electron correlation energy contributions. The true energy values are calculated by partitioning the MP2 two-particle density-matrix via the Interacting Quantum Atoms (IQA) procedure. To our knowledge, this is the first time such energies have been predicted by a machine learning technique. We present here three important proof-of-concept cases: the water monomer, the water dimer, and the van der Waals complex H2···He. These cases represent the final step toward the design of a full IQA potential for molecular simulation. This final piece will enable us to consider situations in which dispersion is the dominant intermolecular interaction. The results from these examples suggest a new method by which dispersion potentials for molecular simulation can be generated. |
doi_str_mv | 10.1021/acs.jctc.7b01157 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1974012771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1974012771</sourcerecordid><originalsourceid>FETCH-LOGICAL-a472t-f4ec55b4391908a68968a9b869d429a1a995f7178ce8ebec34c467a9d91eafe53</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EoqWwM6FILAy0-BwnjseqlA-pCIYyW457KamSuNjJ0H-PSz8GJKa74XnfOz2EXAMdAWXwoI0frUxrRiKnAIk4IX1IuBzKlKWnxx2yHrnwfkVpHHMWn5MekwyAp7JPPt60-SobjGaoXVM2y8gW0eOm0XVpommFpnW2iSbWOax0W4Z92qBbluijwtk6mtu1reyyNLqKxq2t_SU5K3Tl8Wo_B-TzaTqfvAxn78-vk_FsqLlg7bDgaJIk57EESTOdZjLNtMyzVC44kxq0lEkhQGQGM8zRxNzwVGi5kIC6wCQekLtd79rZ7w59q-rSG6wq3aDtvAIpOAUmBAT09g-6sp1rwneKUc4Y44ENFN1RxlnvHRZq7cpau40Cqra2VbCttrbV3naI3OyLu7zGxTFw0BuA-x3wGz0c_bfvB0ocipQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2042224974</pqid></control><display><type>article</type><title>Machine Learning of Dynamic Electron Correlation Energies from Topological Atoms</title><source>ACS Publications</source><creator>McDonagh, James L ; Silva, Arnaldo F ; Vincent, Mark A ; Popelier, Paul L. A</creator><creatorcontrib>McDonagh, James L ; Silva, Arnaldo F ; Vincent, Mark A ; Popelier, Paul L. A</creatorcontrib><description>We present an innovative method for predicting the dynamic electron correlation energy of an atom or a bond in a molecule utilizing topological atoms. Our approach uses the machine learning method Kriging (Gaussian Process Regression with a non-zero mean function) to predict these dynamic electron correlation energy contributions. The true energy values are calculated by partitioning the MP2 two-particle density-matrix via the Interacting Quantum Atoms (IQA) procedure. To our knowledge, this is the first time such energies have been predicted by a machine learning technique. We present here three important proof-of-concept cases: the water monomer, the water dimer, and the van der Waals complex H2···He. These cases represent the final step toward the design of a full IQA potential for molecular simulation. This final piece will enable us to consider situations in which dispersion is the dominant intermolecular interaction. The results from these examples suggest a new method by which dispersion potentials for molecular simulation can be generated.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.7b01157</identifier><identifier>PMID: 29211469</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Artificial intelligence ; Chemical bonds ; Correlation ; Electrons ; Gaussian process ; Kriging ; Machine learning ; Molecular chains ; Particle density (concentration)</subject><ispartof>Journal of chemical theory and computation, 2018-01, Vol.14 (1), p.216-224</ispartof><rights>Copyright American Chemical Society Jan 9, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a472t-f4ec55b4391908a68968a9b869d429a1a995f7178ce8ebec34c467a9d91eafe53</citedby><cites>FETCH-LOGICAL-a472t-f4ec55b4391908a68968a9b869d429a1a995f7178ce8ebec34c467a9d91eafe53</cites><orcidid>0000-0001-9053-1363 ; 0000-0002-2323-6898</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.7b01157$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.7b01157$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29211469$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McDonagh, James L</creatorcontrib><creatorcontrib>Silva, Arnaldo F</creatorcontrib><creatorcontrib>Vincent, Mark A</creatorcontrib><creatorcontrib>Popelier, Paul L. A</creatorcontrib><title>Machine Learning of Dynamic Electron Correlation Energies from Topological Atoms</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>We present an innovative method for predicting the dynamic electron correlation energy of an atom or a bond in a molecule utilizing topological atoms. Our approach uses the machine learning method Kriging (Gaussian Process Regression with a non-zero mean function) to predict these dynamic electron correlation energy contributions. The true energy values are calculated by partitioning the MP2 two-particle density-matrix via the Interacting Quantum Atoms (IQA) procedure. To our knowledge, this is the first time such energies have been predicted by a machine learning technique. We present here three important proof-of-concept cases: the water monomer, the water dimer, and the van der Waals complex H2···He. These cases represent the final step toward the design of a full IQA potential for molecular simulation. This final piece will enable us to consider situations in which dispersion is the dominant intermolecular interaction. The results from these examples suggest a new method by which dispersion potentials for molecular simulation can be generated.</description><subject>Artificial intelligence</subject><subject>Chemical bonds</subject><subject>Correlation</subject><subject>Electrons</subject><subject>Gaussian process</subject><subject>Kriging</subject><subject>Machine learning</subject><subject>Molecular chains</subject><subject>Particle density (concentration)</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EoqWwM6FILAy0-BwnjseqlA-pCIYyW457KamSuNjJ0H-PSz8GJKa74XnfOz2EXAMdAWXwoI0frUxrRiKnAIk4IX1IuBzKlKWnxx2yHrnwfkVpHHMWn5MekwyAp7JPPt60-SobjGaoXVM2y8gW0eOm0XVpommFpnW2iSbWOax0W4Z92qBbluijwtk6mtu1reyyNLqKxq2t_SU5K3Tl8Wo_B-TzaTqfvAxn78-vk_FsqLlg7bDgaJIk57EESTOdZjLNtMyzVC44kxq0lEkhQGQGM8zRxNzwVGi5kIC6wCQekLtd79rZ7w59q-rSG6wq3aDtvAIpOAUmBAT09g-6sp1rwneKUc4Y44ENFN1RxlnvHRZq7cpau40Cqra2VbCttrbV3naI3OyLu7zGxTFw0BuA-x3wGz0c_bfvB0ocipQ</recordid><startdate>20180109</startdate><enddate>20180109</enddate><creator>McDonagh, James L</creator><creator>Silva, Arnaldo F</creator><creator>Vincent, Mark A</creator><creator>Popelier, Paul L. A</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9053-1363</orcidid><orcidid>https://orcid.org/0000-0002-2323-6898</orcidid></search><sort><creationdate>20180109</creationdate><title>Machine Learning of Dynamic Electron Correlation Energies from Topological Atoms</title><author>McDonagh, James L ; Silva, Arnaldo F ; Vincent, Mark A ; Popelier, Paul L. A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a472t-f4ec55b4391908a68968a9b869d429a1a995f7178ce8ebec34c467a9d91eafe53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial intelligence</topic><topic>Chemical bonds</topic><topic>Correlation</topic><topic>Electrons</topic><topic>Gaussian process</topic><topic>Kriging</topic><topic>Machine learning</topic><topic>Molecular chains</topic><topic>Particle density (concentration)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McDonagh, James L</creatorcontrib><creatorcontrib>Silva, Arnaldo F</creatorcontrib><creatorcontrib>Vincent, Mark A</creatorcontrib><creatorcontrib>Popelier, Paul L. A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McDonagh, James L</au><au>Silva, Arnaldo F</au><au>Vincent, Mark A</au><au>Popelier, Paul L. A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning of Dynamic Electron Correlation Energies from Topological Atoms</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2018-01-09</date><risdate>2018</risdate><volume>14</volume><issue>1</issue><spage>216</spage><epage>224</epage><pages>216-224</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>We present an innovative method for predicting the dynamic electron correlation energy of an atom or a bond in a molecule utilizing topological atoms. Our approach uses the machine learning method Kriging (Gaussian Process Regression with a non-zero mean function) to predict these dynamic electron correlation energy contributions. The true energy values are calculated by partitioning the MP2 two-particle density-matrix via the Interacting Quantum Atoms (IQA) procedure. To our knowledge, this is the first time such energies have been predicted by a machine learning technique. We present here three important proof-of-concept cases: the water monomer, the water dimer, and the van der Waals complex H2···He. These cases represent the final step toward the design of a full IQA potential for molecular simulation. This final piece will enable us to consider situations in which dispersion is the dominant intermolecular interaction. The results from these examples suggest a new method by which dispersion potentials for molecular simulation can be generated.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29211469</pmid><doi>10.1021/acs.jctc.7b01157</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9053-1363</orcidid><orcidid>https://orcid.org/0000-0002-2323-6898</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9618 |
ispartof | Journal of chemical theory and computation, 2018-01, Vol.14 (1), p.216-224 |
issn | 1549-9618 1549-9626 |
language | eng |
recordid | cdi_proquest_miscellaneous_1974012771 |
source | ACS Publications |
subjects | Artificial intelligence Chemical bonds Correlation Electrons Gaussian process Kriging Machine learning Molecular chains Particle density (concentration) |
title | Machine Learning of Dynamic Electron Correlation Energies from Topological Atoms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A35%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20of%20Dynamic%20Electron%20Correlation%20Energies%20from%20Topological%20Atoms&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=McDonagh,%20James%20L&rft.date=2018-01-09&rft.volume=14&rft.issue=1&rft.spage=216&rft.epage=224&rft.pages=216-224&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.7b01157&rft_dat=%3Cproquest_cross%3E1974012771%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2042224974&rft_id=info:pmid/29211469&rfr_iscdi=true |