Machine Learning of Dynamic Electron Correlation Energies from Topological Atoms

We present an innovative method for predicting the dynamic electron correlation energy of an atom or a bond in a molecule utilizing topological atoms. Our approach uses the machine learning method Kriging (Gaussian Process Regression with a non-zero mean function) to predict these dynamic electron c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical theory and computation 2018-01, Vol.14 (1), p.216-224
Hauptverfasser: McDonagh, James L, Silva, Arnaldo F, Vincent, Mark A, Popelier, Paul L. A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 224
container_issue 1
container_start_page 216
container_title Journal of chemical theory and computation
container_volume 14
creator McDonagh, James L
Silva, Arnaldo F
Vincent, Mark A
Popelier, Paul L. A
description We present an innovative method for predicting the dynamic electron correlation energy of an atom or a bond in a molecule utilizing topological atoms. Our approach uses the machine learning method Kriging (Gaussian Process Regression with a non-zero mean function) to predict these dynamic electron correlation energy contributions. The true energy values are calculated by partitioning the MP2 two-particle density-matrix via the Interacting Quantum Atoms (IQA) procedure. To our knowledge, this is the first time such energies have been predicted by a machine learning technique. We present here three important proof-of-concept cases: the water monomer, the water dimer, and the van der Waals complex H2···He. These cases represent the final step toward the design of a full IQA potential for molecular simulation. This final piece will enable us to consider situations in which dispersion is the dominant intermolecular interaction. The results from these examples suggest a new method by which dispersion potentials for molecular simulation can be generated.
doi_str_mv 10.1021/acs.jctc.7b01157
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1974012771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1974012771</sourcerecordid><originalsourceid>FETCH-LOGICAL-a472t-f4ec55b4391908a68968a9b869d429a1a995f7178ce8ebec34c467a9d91eafe53</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EoqWwM6FILAy0-BwnjseqlA-pCIYyW457KamSuNjJ0H-PSz8GJKa74XnfOz2EXAMdAWXwoI0frUxrRiKnAIk4IX1IuBzKlKWnxx2yHrnwfkVpHHMWn5MekwyAp7JPPt60-SobjGaoXVM2y8gW0eOm0XVpommFpnW2iSbWOax0W4Z92qBbluijwtk6mtu1reyyNLqKxq2t_SU5K3Tl8Wo_B-TzaTqfvAxn78-vk_FsqLlg7bDgaJIk57EESTOdZjLNtMyzVC44kxq0lEkhQGQGM8zRxNzwVGi5kIC6wCQekLtd79rZ7w59q-rSG6wq3aDtvAIpOAUmBAT09g-6sp1rwneKUc4Y44ENFN1RxlnvHRZq7cpau40Cqra2VbCttrbV3naI3OyLu7zGxTFw0BuA-x3wGz0c_bfvB0ocipQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2042224974</pqid></control><display><type>article</type><title>Machine Learning of Dynamic Electron Correlation Energies from Topological Atoms</title><source>ACS Publications</source><creator>McDonagh, James L ; Silva, Arnaldo F ; Vincent, Mark A ; Popelier, Paul L. A</creator><creatorcontrib>McDonagh, James L ; Silva, Arnaldo F ; Vincent, Mark A ; Popelier, Paul L. A</creatorcontrib><description>We present an innovative method for predicting the dynamic electron correlation energy of an atom or a bond in a molecule utilizing topological atoms. Our approach uses the machine learning method Kriging (Gaussian Process Regression with a non-zero mean function) to predict these dynamic electron correlation energy contributions. The true energy values are calculated by partitioning the MP2 two-particle density-matrix via the Interacting Quantum Atoms (IQA) procedure. To our knowledge, this is the first time such energies have been predicted by a machine learning technique. We present here three important proof-of-concept cases: the water monomer, the water dimer, and the van der Waals complex H2···He. These cases represent the final step toward the design of a full IQA potential for molecular simulation. This final piece will enable us to consider situations in which dispersion is the dominant intermolecular interaction. The results from these examples suggest a new method by which dispersion potentials for molecular simulation can be generated.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.7b01157</identifier><identifier>PMID: 29211469</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Artificial intelligence ; Chemical bonds ; Correlation ; Electrons ; Gaussian process ; Kriging ; Machine learning ; Molecular chains ; Particle density (concentration)</subject><ispartof>Journal of chemical theory and computation, 2018-01, Vol.14 (1), p.216-224</ispartof><rights>Copyright American Chemical Society Jan 9, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a472t-f4ec55b4391908a68968a9b869d429a1a995f7178ce8ebec34c467a9d91eafe53</citedby><cites>FETCH-LOGICAL-a472t-f4ec55b4391908a68968a9b869d429a1a995f7178ce8ebec34c467a9d91eafe53</cites><orcidid>0000-0001-9053-1363 ; 0000-0002-2323-6898</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.7b01157$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.7b01157$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29211469$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McDonagh, James L</creatorcontrib><creatorcontrib>Silva, Arnaldo F</creatorcontrib><creatorcontrib>Vincent, Mark A</creatorcontrib><creatorcontrib>Popelier, Paul L. A</creatorcontrib><title>Machine Learning of Dynamic Electron Correlation Energies from Topological Atoms</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>We present an innovative method for predicting the dynamic electron correlation energy of an atom or a bond in a molecule utilizing topological atoms. Our approach uses the machine learning method Kriging (Gaussian Process Regression with a non-zero mean function) to predict these dynamic electron correlation energy contributions. The true energy values are calculated by partitioning the MP2 two-particle density-matrix via the Interacting Quantum Atoms (IQA) procedure. To our knowledge, this is the first time such energies have been predicted by a machine learning technique. We present here three important proof-of-concept cases: the water monomer, the water dimer, and the van der Waals complex H2···He. These cases represent the final step toward the design of a full IQA potential for molecular simulation. This final piece will enable us to consider situations in which dispersion is the dominant intermolecular interaction. The results from these examples suggest a new method by which dispersion potentials for molecular simulation can be generated.</description><subject>Artificial intelligence</subject><subject>Chemical bonds</subject><subject>Correlation</subject><subject>Electrons</subject><subject>Gaussian process</subject><subject>Kriging</subject><subject>Machine learning</subject><subject>Molecular chains</subject><subject>Particle density (concentration)</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EoqWwM6FILAy0-BwnjseqlA-pCIYyW457KamSuNjJ0H-PSz8GJKa74XnfOz2EXAMdAWXwoI0frUxrRiKnAIk4IX1IuBzKlKWnxx2yHrnwfkVpHHMWn5MekwyAp7JPPt60-SobjGaoXVM2y8gW0eOm0XVpommFpnW2iSbWOax0W4Z92qBbluijwtk6mtu1reyyNLqKxq2t_SU5K3Tl8Wo_B-TzaTqfvAxn78-vk_FsqLlg7bDgaJIk57EESTOdZjLNtMyzVC44kxq0lEkhQGQGM8zRxNzwVGi5kIC6wCQekLtd79rZ7w59q-rSG6wq3aDtvAIpOAUmBAT09g-6sp1rwneKUc4Y44ENFN1RxlnvHRZq7cpau40Cqra2VbCttrbV3naI3OyLu7zGxTFw0BuA-x3wGz0c_bfvB0ocipQ</recordid><startdate>20180109</startdate><enddate>20180109</enddate><creator>McDonagh, James L</creator><creator>Silva, Arnaldo F</creator><creator>Vincent, Mark A</creator><creator>Popelier, Paul L. A</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9053-1363</orcidid><orcidid>https://orcid.org/0000-0002-2323-6898</orcidid></search><sort><creationdate>20180109</creationdate><title>Machine Learning of Dynamic Electron Correlation Energies from Topological Atoms</title><author>McDonagh, James L ; Silva, Arnaldo F ; Vincent, Mark A ; Popelier, Paul L. A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a472t-f4ec55b4391908a68968a9b869d429a1a995f7178ce8ebec34c467a9d91eafe53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial intelligence</topic><topic>Chemical bonds</topic><topic>Correlation</topic><topic>Electrons</topic><topic>Gaussian process</topic><topic>Kriging</topic><topic>Machine learning</topic><topic>Molecular chains</topic><topic>Particle density (concentration)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McDonagh, James L</creatorcontrib><creatorcontrib>Silva, Arnaldo F</creatorcontrib><creatorcontrib>Vincent, Mark A</creatorcontrib><creatorcontrib>Popelier, Paul L. A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McDonagh, James L</au><au>Silva, Arnaldo F</au><au>Vincent, Mark A</au><au>Popelier, Paul L. A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning of Dynamic Electron Correlation Energies from Topological Atoms</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2018-01-09</date><risdate>2018</risdate><volume>14</volume><issue>1</issue><spage>216</spage><epage>224</epage><pages>216-224</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>We present an innovative method for predicting the dynamic electron correlation energy of an atom or a bond in a molecule utilizing topological atoms. Our approach uses the machine learning method Kriging (Gaussian Process Regression with a non-zero mean function) to predict these dynamic electron correlation energy contributions. The true energy values are calculated by partitioning the MP2 two-particle density-matrix via the Interacting Quantum Atoms (IQA) procedure. To our knowledge, this is the first time such energies have been predicted by a machine learning technique. We present here three important proof-of-concept cases: the water monomer, the water dimer, and the van der Waals complex H2···He. These cases represent the final step toward the design of a full IQA potential for molecular simulation. This final piece will enable us to consider situations in which dispersion is the dominant intermolecular interaction. The results from these examples suggest a new method by which dispersion potentials for molecular simulation can be generated.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29211469</pmid><doi>10.1021/acs.jctc.7b01157</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9053-1363</orcidid><orcidid>https://orcid.org/0000-0002-2323-6898</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-9618
ispartof Journal of chemical theory and computation, 2018-01, Vol.14 (1), p.216-224
issn 1549-9618
1549-9626
language eng
recordid cdi_proquest_miscellaneous_1974012771
source ACS Publications
subjects Artificial intelligence
Chemical bonds
Correlation
Electrons
Gaussian process
Kriging
Machine learning
Molecular chains
Particle density (concentration)
title Machine Learning of Dynamic Electron Correlation Energies from Topological Atoms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A35%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20of%20Dynamic%20Electron%20Correlation%20Energies%20from%20Topological%20Atoms&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=McDonagh,%20James%20L&rft.date=2018-01-09&rft.volume=14&rft.issue=1&rft.spage=216&rft.epage=224&rft.pages=216-224&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.7b01157&rft_dat=%3Cproquest_cross%3E1974012771%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2042224974&rft_id=info:pmid/29211469&rfr_iscdi=true