Machine Learning of Dynamic Electron Correlation Energies from Topological Atoms

We present an innovative method for predicting the dynamic electron correlation energy of an atom or a bond in a molecule utilizing topological atoms. Our approach uses the machine learning method Kriging (Gaussian Process Regression with a non-zero mean function) to predict these dynamic electron c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical theory and computation 2018-01, Vol.14 (1), p.216-224
Hauptverfasser: McDonagh, James L, Silva, Arnaldo F, Vincent, Mark A, Popelier, Paul L. A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present an innovative method for predicting the dynamic electron correlation energy of an atom or a bond in a molecule utilizing topological atoms. Our approach uses the machine learning method Kriging (Gaussian Process Regression with a non-zero mean function) to predict these dynamic electron correlation energy contributions. The true energy values are calculated by partitioning the MP2 two-particle density-matrix via the Interacting Quantum Atoms (IQA) procedure. To our knowledge, this is the first time such energies have been predicted by a machine learning technique. We present here three important proof-of-concept cases: the water monomer, the water dimer, and the van der Waals complex H2···He. These cases represent the final step toward the design of a full IQA potential for molecular simulation. This final piece will enable us to consider situations in which dispersion is the dominant intermolecular interaction. The results from these examples suggest a new method by which dispersion potentials for molecular simulation can be generated.
ISSN:1549-9618
1549-9626
DOI:10.1021/acs.jctc.7b01157