Gecko-Inspired Dry Adhesive Based on Micro–Nanoscale Hierarchical Arrays for Application in Climbing Devices

The unusual ability of geckos to climb vertical walls underlies a unique combination of a hierarchical structural design and a stiffer material composition. While a dense array of microscopic hierarchical structures enables the gecko toe pads to adhere to various surfaces, a stiffer material (β-kera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2018-01, Vol.10 (1), p.1288-1296
Hauptverfasser: Raut, Hemant Kumar, Baji, Avinash, Hariri, Hassan Hussein, Parveen, Hashina, Soh, Gim Song, Low, Hong Yee, Wood, Kristin L
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The unusual ability of geckos to climb vertical walls underlies a unique combination of a hierarchical structural design and a stiffer material composition. While a dense array of microscopic hierarchical structures enables the gecko toe pads to adhere to various surfaces, a stiffer material (β-keratin) composition enables them to maintain reliable adhesion over innumerable cycles. This unique strategy has been seldom implemented in engineered dry adhesives because fabrication of high-aspect-ratio hierarchical structures using a stiffer polymer is challenging. Herein, we report the fabrication of high-aspect-ratio hierarchical arrays on flexible polycarbonate sheets (stiffness comparable to that of β-keratin) by a sacrificial-layer-mediated nanoimprinting technique. Dry-adhesive films comprising the hierarchical arrays showed a formidable shear adhesion of 11.91 ± 0.43 N/cm2. Cyclic adhesion tests also showed that the shear adhesion of the adhesive films reduced by only about 20% after 50 cycles and remained nearly constant until about 200 cycles. Most importantly, the high-aspect-ratio hierarchical arrays were integrated onto the feet of a miniature robot and the locomotion on a 30° inclined surface was demonstrated.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.7b09526