Gecko-Inspired Dry Adhesive Based on Micro–Nanoscale Hierarchical Arrays for Application in Climbing Devices
The unusual ability of geckos to climb vertical walls underlies a unique combination of a hierarchical structural design and a stiffer material composition. While a dense array of microscopic hierarchical structures enables the gecko toe pads to adhere to various surfaces, a stiffer material (β-kera...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2018-01, Vol.10 (1), p.1288-1296 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The unusual ability of geckos to climb vertical walls underlies a unique combination of a hierarchical structural design and a stiffer material composition. While a dense array of microscopic hierarchical structures enables the gecko toe pads to adhere to various surfaces, a stiffer material (β-keratin) composition enables them to maintain reliable adhesion over innumerable cycles. This unique strategy has been seldom implemented in engineered dry adhesives because fabrication of high-aspect-ratio hierarchical structures using a stiffer polymer is challenging. Herein, we report the fabrication of high-aspect-ratio hierarchical arrays on flexible polycarbonate sheets (stiffness comparable to that of β-keratin) by a sacrificial-layer-mediated nanoimprinting technique. Dry-adhesive films comprising the hierarchical arrays showed a formidable shear adhesion of 11.91 ± 0.43 N/cm2. Cyclic adhesion tests also showed that the shear adhesion of the adhesive films reduced by only about 20% after 50 cycles and remained nearly constant until about 200 cycles. Most importantly, the high-aspect-ratio hierarchical arrays were integrated onto the feet of a miniature robot and the locomotion on a 30° inclined surface was demonstrated. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.7b09526 |