The role of tobacco smoke induced mitochondrial damage in vascular dysfunction and atherosclerosis

The majority of individuals chronically exposed to tobacco smoke will eventually succumb to cardiovascular disease (CVD). However, despite the major cardiovascular health implications of tobacco smoke exposure, concepts of how such exposure specifically results in cardiovascular cell dysfunction tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis 2007-08, Vol.621 (1), p.61-74
Hauptverfasser: Yang, Zhen, Harrison, Corey M., Chuang, Gin C., Ballinger, Scott W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The majority of individuals chronically exposed to tobacco smoke will eventually succumb to cardiovascular disease (CVD). However, despite the major cardiovascular health implications of tobacco smoke exposure, concepts of how such exposure specifically results in cardiovascular cell dysfunction that leads to CVD development are still being explored. Moreover, surprisingly little is known about the effects of prenatal and childhood tobacco smoke exposure on adult CVD development. Herein, it is proposed that the mitochondrion is a central target for environmental oxidants, including tobacco smoke. By virtue of its multiple, essential roles in cell function including energy production, oxidant signaling, apoptosis, immune response, and thermogenesis, damage to the mitochondrion will likely play an important role in the development of multiple common forms of human disease, including CVD. Specifically, this review will discuss the potential role of tobacco smoke and environmental oxidant exposure in the induction of mitochondrial damage which is related to CVD development. Furthermore, mechanisms of how mitochondrial damage can initiate and/or contribute to CVD are discussed, as are experimental results that are consistent with the hypothesis that mitochondrial damage and dysfunction will increase CVD susceptibility. Aspects of both adult and developmental (fetal and childhood) exposure to tobacco smoke on mitochondrial damage, function and disease development are also discussed, including the future implications and direction of studies involving the role of the mitochondrion in influencing disease susceptibility mediated by environmental factors.
ISSN:0027-5107
1386-1964
1873-135X
0027-5107
DOI:10.1016/j.mrfmmm.2007.02.010