Face inversion reveals holistic processing of peripheral faces

Face perception is accomplished by face-selective neural processes, involving holistic processing that enables highly efficient integration of facial features into a whole-face representation. It has been shown that in face-selective regions of the ventral temporal cortex (VTC), neural resources inv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cortex 2017-12, Vol.97, p.81-95
Hauptverfasser: Kovács, Petra, Knakker, Balázs, Hermann, Petra, Kovács, Gyula, Vidnyánszky, Zoltán
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Face perception is accomplished by face-selective neural processes, involving holistic processing that enables highly efficient integration of facial features into a whole-face representation. It has been shown that in face-selective regions of the ventral temporal cortex (VTC), neural resources involved in holistic processing are primarily dedicated to the central portion of the visual field. These findings raise the intriguing possibility that holistic processing might be the privilege of centrally presented faces and could be strongly diminished in the case of peripheral faces. We addressed this question using the face inversion effect (FIE), a well-established marker of holistic face processing. The behavioral results revealed impaired identity discrimination performance for inverted peripheral faces scaled according to the V1 magnification factor, compared to upright presented faces. The size of peripheral FIE was comparable to that found for centrally displayed faces. Face inversion affected the early ERP responses to faces in two time intervals. The earliest FIE was most pronounced in the time window between 130 and 140 msec following stimulus presentation, for both centrally and peripherally displayed faces and in the latter case, it was present only over the contralateral hemisphere. The timing of the next component FIE corresponded closely with the temporal interval of the N170 ERP component and showed strong right hemisphere (RH) lateralization, both when faces were displayed in the left or right visual field (RVF). Furthermore, we also showed that centrally presented face masks impaired peripheral face identity discrimination performance, but did not reduce the magnitude of the FIE. These findings revealed robust behavioral and neural inversion effects for peripheral faces and thus suggest that faces are processed holistically throughout the visual field.
ISSN:0010-9452
1973-8102
DOI:10.1016/j.cortex.2017.09.020