Overexpression of a rice defense-related F-box protein gene OsDRF1 in tobacco improves disease resistance through potentiation of defense gene expression

F-box proteins play important roles in plant growth/development and responses to environmental stimuli through targeting substrates into degradation machinery. A rice defense-related F-box protein gene, OsDRF1, was cloned and identified during a course of study aimed at elucidating the molecular bas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physiologia plantarum 2008-11, Vol.134 (3), p.440-452
Hauptverfasser: Cao, Yifei, Yang, Yayun, Zhang, Huijuan, Li, Dayong, Zheng, Zhong, Song, Fengming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:F-box proteins play important roles in plant growth/development and responses to environmental stimuli through targeting substrates into degradation machinery. A rice defense-related F-box protein gene, OsDRF1, was cloned and identified during a course of study aimed at elucidating the molecular basis of induced immunity in rice. OsDRF1 encodes a protein of 328 amino acids, containing a highly conserved F-box domain. Expression of OsDRF1 was induced upon treatment with benzothiadiazole (BTH), a chemical inducer of defense responses in rice. Moreover, in BTH-treated rice seedlings, expression of OsDRF1 was further induced by infection with Magnaporthe grisea, the rice blast fungus, compared with those in water-treated seedlings. OsDRF1 was also upregulated in rice seedlings after treatment with ABA. Overexpression of OsDRF1 in transgenic tobacco resulted in enhanced disease resistance against tomato mosaic virus (ToMV) and Pseudomonas syringae pv. tabaci and strengthened expression of defense-related genes after salicylic acid treatment or ToMV infection. Root elongation of the OsDRF1-overexpressing transgenic seedlings was significantly inhibited by ABA, indicating that overexpression of OsDRF1 resulted in increased ABA sensitivity. The results suggest that OsDRF1 plays a role in disease resistance via upregulating defense-related gene expression and that OsDRF1 may also be involved in the response to ABA.
ISSN:0031-9317
1399-3054
DOI:10.1111/j.1399-3054.2008.01149.x