G0 Cell Cycle Arrest Alone is Insufficient for Enabling the Repair of Ionizing Radiation-Induced Potentially Lethal Damage
van Bree, C., Rodermond, H. M., ten Cate, R., de Vos, J., Stalpers, L. J. A., Haveman, J., Medema, J. P. and Franken, N. A. P. G0 Cell Cycle Arrest Alone is Insufficient for Enabling the Repair of Ionizing Radiation-Induced Potentially Lethal Damage. Radiat. Res. 170, 184–191 (2008). The repair of i...
Gespeichert in:
Veröffentlicht in: | Radiation research 2008-08, Vol.170 (2), p.184-191 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | van Bree, C., Rodermond, H. M., ten Cate, R., de Vos, J., Stalpers, L. J. A., Haveman, J., Medema, J. P. and Franken, N. A. P. G0 Cell Cycle Arrest Alone is Insufficient for Enabling the Repair of Ionizing Radiation-Induced Potentially Lethal Damage. Radiat. Res. 170, 184–191 (2008). The repair of ionizing radiation-induced potentially lethal damage (PLD) is suggested to be important for the clinical response to radiotherapy. PLD repair is usually studied in quiescent cultures prepared by growing cells to confluence with an accumulation of cells in G0 phase of the cell cycle, but the biological pathways enabling PLD repair are still unknown. In this study, we examined whether the controlled expression of two different inducers of G0 cell cycle arrest, the human tumor suppressor gene growth arrest specific 1 (GAS1) in murine fibroblasts and the forkhead transcription factor FOXO3a in human colon carcinoma cells, is sufficient to enable PLD repair. We found that GAS1 and FOXO3a induced a cell cycle arrest in G0 phase with a concomitant reduction of proliferation of log-phase cells. In both cell systems, this cell cycle arrest in G0 phase did not enable PLD repair in log-phase cells. Significant PLD repair was found in all confluent cultures that showed similar cell cycle distributions, while GAS1 and FOXO3a in confluent cells did not influence PLD repair. No differences were found in cell cycle re-entry after replating cells with different capacities for PLD repair. Our data suggest that the induction of G0 cell cycle arrest and the reduction of proliferation are not sufficient to enable PLD repair. |
---|---|
ISSN: | 0033-7587 1938-5404 |
DOI: | 10.1667/RR0845.1 |