Sacrificial Interlayer for Promoting Charge Transport in Hematite Photoanode

The semiconductor/electrolyte interface plays a crucial role in photoelectrochemical (PEC) water-splitting devices as it determines both thermodynamic and kinetic properties of the photoelectrode. Interfacial engineering is central for the device performance improvement. Taking the cheap and stable...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2017-12, Vol.9 (49), p.42723-42733
Hauptverfasser: Zhang, Kai, Dong, Tianjiao, Xie, Guancai, Guan, Liming, Guo, Beidou, Xiang, Qin, Dai, Yawen, Tian, Liangqiu, Batool, Aisha, Jan, Saad Ullah, Boddula, Rajender, Thebo, Akbar Ali, Gong, Jian Ru
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The semiconductor/electrolyte interface plays a crucial role in photoelectrochemical (PEC) water-splitting devices as it determines both thermodynamic and kinetic properties of the photoelectrode. Interfacial engineering is central for the device performance improvement. Taking the cheap and stable hematite (α-Fe2O3) wormlike nanostructure photoanode as a model system, we design a facile sacrificial interlayer approach to suppress the crystal overgrowth and realize Ti doping into the crystal lattice of α-Fe2O3 in one annealing step as well as to avoid the consequent anodic shift of the photocurrent onset potential, ultimately achieving five times increase in its water oxidation photocurrent compared to the bare hematite by promoting the transport of charge carriers, including both separation of photogenerated charge carriers within the bulk semiconductor and transfer of holes across the semiconductor–electrolyte interface. Our research indicates that understanding the semiconductor/electrolyte interfacial engineering mechanism is pivotal for reconciling various strategies in a beneficial way, and this simple and cost-effective method can be generalized into other systems aiming for efficient and scalable solar energy conversion.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.7b13163