Explaining ecosystem multifunction with evolutionary models

Ecosystem function is the outcome of species interactions, traits, and niche overlap – all of which are influenced by evolution. However, it is not well understood how the tempo and mode of niche evolution can influence ecosystem function. In evolutionary models where either species differences accu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecology (Durham) 2017-12, Vol.98 (12), p.3175-3187
Hauptverfasser: Cadotte, Marc W., Livingstone, Stuart W., Yasui, Simone-Louise E., Dinnage, Russell, Li, Jin-tian, Marushia, Robin, Santangelo, James, Shu, Wensheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ecosystem function is the outcome of species interactions, traits, and niche overlap – all of which are influenced by evolution. However, it is not well understood how the tempo and mode of niche evolution can influence ecosystem function. In evolutionary models where either species differences accumulate through random drift in a single trait or species differences accumulate through divergent selection among close relatives, we should expect that ecosystem function is strongly related to diversity. However, when strong selection causes species to converge on specific niches or when novel traits that directly affect function evolve in some clades but not others, the relationship between diversity and ecosystem function might not be very strong. We test these ideas using a field experiment that established plant mixtures with differing phylogenetic diversities and we measured ten different community functions. We show that some functions were strongly predicted by species richness and mean pairwise phylogenetic distance (MPD, a measure of phylogenetic diversity), including biomass production and the reduction of herbivore and pathogen damage in polyculture, while other functions had weaker (litter production and structural complexity) or nonsignificant relationships (e.g., flower production and arthropod abundance) with MPD and richness. However, these divergent results can be explained by different models of niche evolution. These results show that diversity-ecosystem function relationships are the product of evolution, but that the nature of how evolution influences ecosystem function is complex.
ISSN:0012-9658
1939-9170
DOI:10.1002/ecy.2045