The R81T mutation in the nicotinic acetylcholine receptor of Aphis gossypii is associated with neonicotinoid insecticide resistance with differential effects for cyano- and nitro-substituted neonicotinoids
The cotton aphid, Aphis gossypii Glover, is one of the most agriculturally important insect pests. Neonicotinoid insecticides and sulfoxaflor have generally shown excellent control of A. gossypii, but these aphids have recently developed resistance against neonicotinoid insecticides. We previously c...
Gespeichert in:
Veröffentlicht in: | Pesticide biochemistry and physiology 2017-11, Vol.143, p.57-65 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The cotton aphid, Aphis gossypii Glover, is one of the most agriculturally important insect pests. Neonicotinoid insecticides and sulfoxaflor have generally shown excellent control of A. gossypii, but these aphids have recently developed resistance against neonicotinoid insecticides. We previously characterized a field-collected A. gossypii Kushima clone that showed higher resistance to nitro-substituted neonicotinoids, such as imidacloprid, than to cyano-substituted neonicotinoids, such as acetamiprid. This Kushima clone harbors the R81T mutation in the nicotinic acetylcholine receptor (nAChR) β1 subunit; this mutation is the source of neonicotinoid insecticide resistance. In the present study, electrophysiological analyses and molecular modeling were employed to investigate the differential effects of the R81T mutation on cyano- and nitro-substituted neonicotinoids and sulfoxaflor. We isolated full-length coding sequences of A. gossypii nAChR α1, α2, and β1 subunits. When co-expressed in Xenopus laevis oocytes with chicken β2 nAChR, A. gossypii α1 evoked inward currents in a concentration-dependent manner in response to acetylcholine (ACh) and showed sensitivity to neonicotinoid and sulfoxaflor. Additionally, the chicken β2 T77R+E79V (equivalent double mutant of R81T) mutation resulted in a lower effect to cyano-substituted neonicotinoids and sulfoxaflor than to nitro-substituted neonicotinoids. Electrophysiological data and nAChR homology modeling analysis suggested that the Kushima clone exhibited different levels of resistance to cyano- and nitro-substituted neonicotinoid insecticides.
[Display omitted]
•Imax and pEC50 values exhibited the greatest change for nitro-substituted neonicotinoids.•ΔG values were greatest for nitro-substituted neonicotinoids.•These ΔG values strongly correlated with conferred resistance of the Kushima clone. |
---|---|
ISSN: | 0048-3575 1095-9939 |
DOI: | 10.1016/j.pestbp.2017.09.009 |