Effects of AraC treatment on motor coordination and cerebellar cytoarchitecture in the adult rat
Intact cerebellum cytoarchitecture and cellular communication are indispensable for successful motor coordination and certain forms of memory. Cytosine arabinoside (AraC), often used as an anti-neoplastic agent in humans, can have cerebellum-targeting adverse effects. In order to characterize the na...
Gespeichert in:
Veröffentlicht in: | Neurotoxicology (Park Forest South) 2007, Vol.28 (1), p.83-92 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Intact cerebellum cytoarchitecture and cellular communication are indispensable for successful motor coordination and certain forms of memory. Cytosine arabinoside (AraC), often used as an anti-neoplastic agent in humans, can have cerebellum-targeting adverse effects. In order to characterize the nature of AraC-induced cerebellar lesions in an adult rodent model, we have administered AraC (400
mg/kg b.w., i.p.) in adult male Wistar rats for 5 days. The animals’ walking pattern, motor coordination, locomotion, spatial navigation and cognition were evaluated, along with neurofilament- and calbindin-like distribution in the cerebellum. AraC-treated rats demonstrated a disturbed walking pattern and a reduced ability of motor learning and coordination, indicative of a mild cerebellar deficit. Although the general locomotion and spatial cognition of AraC-treated rats was not significantly altered, their navigation into the water, in terms of swimming velocity, was irregular, compared to vehicle-treated animals. Neurofilament-like immunostaining was reduced in the molecular cerebellar layer, while calbindin D 28
kDa levels were increased in Purkinje neurons, following AraC treatment. Administration of the antioxidant
N-acetylcysteine (NAC) (200
mg/kg b.w., p.o.), for 14 days (prior to and during AraC treatment) largely prevented the AraC-induced behavioral deficits. Our in vivo model of neurotoxicity provides data on the AraC-induced behavioral and cellular alterations concerning the adult rat cerebellum. Furthermore, it provides evidence of a possible neuroprophylactic role of the antioxidant
N-acetylcysteine in this model of chemotherapy-induced toxicity. |
---|---|
ISSN: | 0161-813X 1872-9711 |
DOI: | 10.1016/j.neuro.2006.07.016 |