In Vivo Differentiation of Uric Acid Versus Non-Uric Acid Urinary Calculi With Third-Generation Dual-Source Dual-Energy CT at Reduced Radiation Dose

The objective of our study was to evaluate in vivo urinary calculus characterization with third-generation dual-source dual-energy CT (DECT) at reduced versus standard radiation dose. One hundred fifty-three patients requiring unenhanced CT for suspected or known urolithiasis were prospectively incl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of roentgenology (1976) 2018-02, Vol.210 (2), p.358-363
Hauptverfasser: Franken, Axelle, Gevenois, Pierre Alain, Muylem, Alain Van, Howarth, Nigel, Keyzer, Caroline
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The objective of our study was to evaluate in vivo urinary calculus characterization with third-generation dual-source dual-energy CT (DECT) at reduced versus standard radiation dose. One hundred fifty-three patients requiring unenhanced CT for suspected or known urolithiasis were prospectively included in our study. They underwent two acquisitions at reduced-dose CT (90 kV and 50 mAs ; Sn150 kV and 31 mAs , where Sn denotes the interposition of a tin filter in the high-energy beam) and standard-dose CT (90 kV and 50 mAs ; Sn150 kV and 94 mAs ). One radiologist interpreted the reduced-dose examinations before the standard-dose examinations during the same session. Among 103 patients (23 women, 80 men; mean age ± SD, 50 ± 15 years; age range, 18-82 years) with urolithiasis, dedicated DECT software measured the maximal diameter and CT numbers, calculated the DECT number ratio, and labeled with a color code each calculus visualized by the radiologist as uric acid (UA) or non-UA. Volume CT dose index (CTDI ) and dose-length product (DLP) were recorded. The radiologist visualized 279 calculi on standard-dose CT and 262 on reduced-dose CT; 17 calculi were missed on reduced-dose CT, all of which were ≤ 3 mm. Among the 262 calculi visualized at both doses, the CT number ratio was obtained with the software for 227 calculi and was not different between the doses (p = 0.093). Among these 262 calculi, 197 were labeled at both doses; 194 of the 197 labeled calculi were labeled with the same color code. Among the 65 remaining calculi, 48 and 61 (all ≤ 5 mm) were not labeled at standard-dose and reduced-dose CT (p = 0.005), respectively. At reduced-dose CT, the mean CTDI was 2.67 mGy and the mean DLP was 102.2 mGy × cm. With third-generation dual-source DECT, a larger proportion of calculi ≤ 5 mm are not characterized as UA or non-UA at a reduced dose.
ISSN:0361-803X
1546-3141
DOI:10.2214/AJR.17.18091