Poly(ethylene glycol dimethacrylate- n-vinyl imidazole) beads for heavy metal removal

Poly(ethylene glycol dimethacrylate- n-vinyl imidazole) [poly(EGDMA–VIM)] hydrogel (average diameter 150–200 μm) was prepared by copolymerizing ethylene glycol dimethacrylate (EGDMA) with n-vinyl imidazole (VIM). The copolymer hydrogel bead composition was characterized by elemental analysis and fou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2004-01, Vol.106 (2), p.93-99
Hauptverfasser: Kara, Ali, Uzun, Lokman, Beşirli, Necati, Denizli, Adil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Poly(ethylene glycol dimethacrylate- n-vinyl imidazole) [poly(EGDMA–VIM)] hydrogel (average diameter 150–200 μm) was prepared by copolymerizing ethylene glycol dimethacrylate (EGDMA) with n-vinyl imidazole (VIM). The copolymer hydrogel bead composition was characterized by elemental analysis and found to contain 5 EGDMA monomer units each VIM monomer unit. Poly(EGDMA–VIM) beads had a specific surface area of 59.8 m 2/g. Poly(EGDMA–VIM) beads were characterized by swelling studies and scanning electron microscopy (SEM). These poly(EGDMA–VIM) beads with a swelling ratio of 78% were used for the heavy metal removal studies. Chelation capacity of the beads for the selected metal ions, i.e., Cd(II), Hg(II) and Pb(II) were investigated in aqueous media containing different amounts of these ions (10–750 mg/l) and at different pH values (3.0–7.0). Chelation rate was very fast. The maximum chelation capacities of the poly(EGDMA–VIM) beads were 69.4 mg/g for Cd(II), 114.8 mg/g for Pb(II) and 163.5 mg/g for Hg(II). The affinity order on molar basis was observed as follows: Hg(II)>Cd(II)>Pb(II). Chelation behavior of heavy metal ions could be modelled using both the Langmuir and Freundlich isotherms. pH significantly affected the chelation capacity of VIM incorporated beads. Chelation of heavy metal ions from synthetic wastewater was also studied. The chelation capacities are 45.6 mg/g for Cd(II), 74.2 mg/g for Hg(II) and 92.5 mg/g for Pb(II) at 0.5 mmol/l initial metal concentration. Regeneration of the chelating-beads was easily performed with 0.1 M HNO 3. These features make poly(EGDMA–VIM) beads potential candidate adsorbent for heavy metal removal.
ISSN:0304-3894
1873-3336
DOI:10.1016/j.jhazmat.2003.08.016