Two-step hydrothermally synthesized carbon nanodots/WO3 photocatalysts with enhanced photocatalytic performance
In this study, carbon nanodots (C-dots)/WO3 photocatalysts were prepared via a two-step hydrothermal method. The morphologies and optical properties of the as-prepared materials were investigated. Compared with the prepared WO3 and C-dots, the C-dots/WO3 possessed stronger photocatalytic capability...
Gespeichert in:
Veröffentlicht in: | Dalton transactions : an international journal of inorganic chemistry 2017, Vol.46 (45), p.15769-15777 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, carbon nanodots (C-dots)/WO3 photocatalysts were prepared via a two-step hydrothermal method. The morphologies and optical properties of the as-prepared materials were investigated. Compared with the prepared WO3 and C-dots, the C-dots/WO3 possessed stronger photocatalytic capability and excellent recyclability for photocatalytic elimination of Rhodamine B. For example, the achieved first order reaction rate constant of 0.01942 min−1 for C-dots/WO3 was ∼7.7 times higher than that of the prepared WO3. The enhanced photocatalytic activity of C-dots/WO3 was attributed to the enhanced light harvesting ability and efficient spatial separation of photo-excited electron–hole pairs resulting from the synergistic effect of WO3 and C-dots. The high photocatalytic activity of C-dots/WO3 remained unchanged even after 3 cycles of use. Meanwhile, a possible mechanism of C-dots/WO3 for the enhanced photocatalytic activity was proposed. |
---|---|
ISSN: | 1477-9226 1477-9234 |
DOI: | 10.1039/c7dt03003g |