Identification of de novo germline mutations and causal genes for sporadic diseases using trio‐based whole‐exome/genome sequencing
ABSTRACT Whole‐genome or whole‐exome sequencing (WGS/WES) of the affected proband together with normal parents (trio) is commonly adopted to identify de novo germline mutations (DNMs) underlying sporadic cases of various genetic disorders. However, our current knowledge of the occurrence and functio...
Gespeichert in:
Veröffentlicht in: | Biological reviews of the Cambridge Philosophical Society 2018-05, Vol.93 (2), p.1014-1031 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ABSTRACT
Whole‐genome or whole‐exome sequencing (WGS/WES) of the affected proband together with normal parents (trio) is commonly adopted to identify de novo germline mutations (DNMs) underlying sporadic cases of various genetic disorders. However, our current knowledge of the occurrence and functional effects of DNMs remains limited and accurately identifying the disease‐causing DNM from a group of irrelevant DNMs is complicated. Herein, we provide a general‐purpose discussion of important issues related to pathogenic gene identification based on trio‐based WGS/WES data. Specifically, the relevance of DNMs to human sporadic diseases, current knowledge of DNM biogenesis mechanisms, and common strategies or software tools used for DNM detection are reviewed, followed by a discussion of pathogenic gene prioritization. In addition, several key factors that may affect DNM identification accuracy and causal gene prioritization are reviewed. Based on recent major advances, this review both sheds light on how trio‐based WGS/WES technologies can play a significant role in the identification of DNMs and causal genes for sporadic diseases, and also discusses existing challenges. |
---|---|
ISSN: | 1464-7931 1469-185X |
DOI: | 10.1111/brv.12383 |