The gut virome of the protochordate model organism, Ciona intestinalis subtype A

•The gut virome of the protochordate model organism, Ciona intestinalis subtype A.•Ciona possesses a gut virome distinct from seawater.•Ciona maintain temporally stable viruses.•The Ciona gut virome is dominated by viruses from the Caudovirales order.•Bacteria and viruses exhibit compartmentalizatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Virus research 2018-01, Vol.244, p.137-146
Hauptverfasser: Leigh, Brittany A., Djurhuus, Anni, Breitbart, Mya, Dishaw, Larry J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•The gut virome of the protochordate model organism, Ciona intestinalis subtype A.•Ciona possesses a gut virome distinct from seawater.•Ciona maintain temporally stable viruses.•The Ciona gut virome is dominated by viruses from the Caudovirales order.•Bacteria and viruses exhibit compartmentalization in the stomach, mid- and hindgut. The identification of host-specific bacterial and viral communities associated with diverse animals has led to the concept of the metaorganism, which defines the animal and all of its associated microbes as a single unit. Here we sequence the viruses found in the gut (i.e., the gut virome) of the marine invertebrate model system, Ciona intestinalis subtype A, in samples collected one year apart. We present evidence for a host-associated virome that is distinct from the surrounding seawater and contains some temporally-stable members. Comparison of gut tissues before and after starvation in virus-free water enabled the differentiation between the Ciona-specific virome and transient viral communities associated with dietary sources. The Ciona gut viromes were dominated by double-stranded DNA tailed phages (Order Caudovirales) and sequence assembly yielded a number of complete circular phage genomes, most of which were highly divergent from known genomes. Unique viral communities were found in distinct gut niches (stomach, midgut and hindgut), paralleling the compartmentalization of bacterial communities. Additionally, integrase and excisionase genes, including many that are similar to prophage sequences within the genomes of bacterial genera belonging to the Ciona core microbiome, were prevalent in the viromes, indicating the active induction of prophages within the gut ecosystem. Knowledge of the gut virome of this model organism lays the foundation for studying the interactions between viruses, bacteria, and host immunity.
ISSN:0168-1702
1872-7492
DOI:10.1016/j.virusres.2017.11.015