CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy
Fry et al . report the first results from a human trial of a CD22-directed chimeric antigen receptor (CAR) T cell therapy providing evidence of efficacy in the treatment of pre–B cell acute lymphoblastic leukemia that is immunotherapy-naive or resistant to CD19-directed CAR T cells. Chimeric antigen...
Gespeichert in:
Veröffentlicht in: | Nature medicine 2018-01, Vol.24 (1), p.20-28 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fry
et al
. report the first results from a human trial of a CD22-directed chimeric antigen receptor (CAR) T cell therapy providing evidence of efficacy in the treatment of pre–B cell acute lymphoblastic leukemia that is immunotherapy-naive or resistant to CD19-directed CAR T cells.
Chimeric antigen receptor (CAR) T cells targeting CD19 mediate potent effects in relapsed and/or refractory pre–B cell acute lymphoblastic leukemia (B-ALL), but antigen loss is a frequent cause of resistance to CD19-targeted immunotherapy. CD22 is also expressed in most cases of B-ALL and is usually retained following CD19 loss. We report results from a phase 1 trial testing a new CD22-targeted CAR (CD22-CAR) in 21 children and adults, including 17 who were previously treated with CD19-directed immunotherapy. Dose-dependent antileukemic activity was observed, with complete remission obtained in 73% (11/15) of patients receiving ≥1 × 10
6
CD22-CAR T cells per kg body weight, including 5 of 5 patients with CD19
dim
or CD19
−
B-ALL. Median remission duration was 6 months. Relapses were associated with diminished CD22 site density that likely permitted CD22
+
cell escape from killing by CD22-CAR T cells. These results are the first to establish the clinical activity of a CD22-CAR in B-ALL, including leukemia resistant to anti-CD19 immunotherapy, demonstrating potency against B-ALL comparable to that of CD19-CAR at biologically active doses. Our results also highlight the critical role played by antigen density in regulating CAR function. |
---|---|
ISSN: | 1078-8956 1546-170X |
DOI: | 10.1038/nm.4441 |