Cisplatin and doxorubicin high-loaded nanodrug based on biocompatible thioether- and ethane-bridged hollow mesoporous organosilica nanoparticles
A cisplatin and doxorubicin high-loaded nanodrug by using thioether- and ethane-bridged mesoporous organosilica nanoparticle with core-contained double hollow shells has been prepared for the first time. [Display omitted] Herein, a mesoporous organosilica nanoparticle (MON) based nanodrug highly loa...
Gespeichert in:
Veröffentlicht in: | Journal of colloid and interface science 2018-03, Vol.513, p.214-221 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A cisplatin and doxorubicin high-loaded nanodrug by using thioether- and ethane-bridged mesoporous organosilica nanoparticle with core-contained double hollow shells has been prepared for the first time.
[Display omitted]
Herein, a mesoporous organosilica nanoparticle (MON) based nanodrug highly loaded with cisplatin (CDDP) and doxorubicin (DOX) (denoted as MONs/CDDP/DOX) has been successfully prepared for the first time. The MONs are characterized with core-contained double hollow shells, thioether and ethane groups separately incorporated frameworks, uniform diameter (420 nm), large surface area (592 m2/g), and ordered pore size (2.5 nm). The safety evaluation of the MONs based on cell viability, haemolytic activity, histological change, and serum biochemical index demonstrates that they have excellent biological compatibility. The efficient uptake of the MONs by human breast cancer MCF-7 cells is further confirmed via confocal laser scanning imaging and flow cytometry. Importantly, the contents of CDDP and DOX in the MONs/CDDP/DOX nanodrug are as high as 120 mg/g and 85 mg/g, respectively. Therefore, the MONs/CDDP/DOX shows a significant improved killing effect against human breast cancer MCF-7 cells compared with sole DOX or CDDP loaded MONs, demonstating the promise of the nanodrug for cancer treatment. |
---|---|
ISSN: | 0021-9797 1095-7103 |
DOI: | 10.1016/j.jcis.2017.10.116 |