Design and commissioning of a laminar soil container for use on small shaking tables

This paper describes the design, fabrication and commissioning of a single axis laminar shear box for use in seismic soil–structure interaction studies. A laminar shear box is a flexible container that can be placed on a shaking table to simulate vertical shear-wave propagation during earthquakes th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soil dynamics and earthquake engineering (1984) 2009-02, Vol.29 (2), p.404-414
Hauptverfasser: Turan, Alper, Hinchberger, Sean D., El Naggar, Hesham
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper describes the design, fabrication and commissioning of a single axis laminar shear box for use in seismic soil–structure interaction studies. A laminar shear box is a flexible container that can be placed on a shaking table to simulate vertical shear-wave propagation during earthquakes through a soil layer of finite thickness. The laminar shear box described in this paper was designed to overcome the base shear limitations of a small shaking table at The University of Western Ontario. The design details of the box are provided in addition to results of dynamic tests performed to commission the box. A synthetic clay comprising sodium bentonite mixed with diluted glycerin was used as the model soil and 1-G similitude theory was employed to maintain model to prototype similarity. The model soil was compacted into the container in lifts to achieve soil stiffness that increased with depth. A series of shaking table tests and numerical analyses that were performed to study the performance of the laminar box and non-linear seismic behavior of the model clay are described. The results of this study show that the laminar box does not impose significant boundary effects and is able to maintain 1-D soil column behavior. In addition, the dynamic behavior of the model clay during scaled model tests was found to be consistent with the behavior measured during cyclic laboratory tests.
ISSN:0267-7261
1879-341X
DOI:10.1016/j.soildyn.2008.04.003