State-to-state chemistry for three-body recombination in an ultracold rubidium gas

Experimental investigation of chemical reactions with full quantum state resolution for all reactants and products has been a long-term challenge. Here we prepare an ultracold few-body quantum state of reactants and demonstrate state-to-state chemistry for the recombination of three spin-polarized u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2017-11, Vol.358 (6365), p.921-924
Hauptverfasser: Wolf, Joschka, Deiß, Markus, Krükow, Artjom, Tiemann, Eberhard, Ruzic, Brandon P., Wang, Yujun, D’Incao, José P., Julienne, Paul S., Denschlag, ohannes Hecker
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 924
container_issue 6365
container_start_page 921
container_title Science (American Association for the Advancement of Science)
container_volume 358
creator Wolf, Joschka
Deiß, Markus
Krükow, Artjom
Tiemann, Eberhard
Ruzic, Brandon P.
Wang, Yujun
D’Incao, José P.
Julienne, Paul S.
Denschlag, ohannes Hecker
description Experimental investigation of chemical reactions with full quantum state resolution for all reactants and products has been a long-term challenge. Here we prepare an ultracold few-body quantum state of reactants and demonstrate state-to-state chemistry for the recombination of three spin-polarized ultracold rubidium (Rb) atoms to form a weakly bound Rb₂ molecule. The measured product distribution covers about 90% of the final products, and we are able to discriminate between product states with a level splitting as small as 20 megahertz multiplied by Planck’s constant. Furthermore, we formulate propensity rules for the distribution of products, and we develop a theoretical model that predicts many of our experimental observations. The scheme can readily be adapted to other species and opens a door to detailed investigations of inelastic or reactive processes.
doi_str_mv 10.1126/science.aan8721
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1966237349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26400859</jstor_id><sourcerecordid>26400859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-730eacb3d8c54a6fd083de0930e563d72e9313b775df70d6d67d677e81d9d4a33</originalsourceid><addsrcrecordid>eNpdkU1LxDAQhoMouq6ePSkBL16qk6ZNmqMsfoEg-HEuaTLVLm2jSXrYf2-WXRWEgRlmnnkZ3iHkhMElY7m4CqbD0eCl1mMlc7ZDZgxUmakc-C6ZAXCRVSDLA3IYwhIgzRTfJwe5YoWoGJuR55eoI2bRZWFdUPOBQxeiX9HWeRo_PGLWOLuiHo0bmm7UsXMj7UaqRzr10Wvjekv91HS2mwb6rsMR2Wt1H_B4m-fk7fbmdXGfPT7dPSyuHzNT5GXMJAfUpuG2MmWhRWuh4hZBpXYpuJU5Ks54I2VpWwlWWCFTSKyYVbbQnM_JxUb307uvCUOs0-UG-16P6KZQMyVEziUvVELP_6FLN_kxXZcoWQKwkheJutpQxrsQPLb1p-8G7Vc1g3ptd721u97anTbOtrpTM6D95X_8TcDpBliG6PzfXBQAVfrFNyJghww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1975001534</pqid></control><display><type>article</type><title>State-to-state chemistry for three-body recombination in an ultracold rubidium gas</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><creator>Wolf, Joschka ; Deiß, Markus ; Krükow, Artjom ; Tiemann, Eberhard ; Ruzic, Brandon P. ; Wang, Yujun ; D’Incao, José P. ; Julienne, Paul S. ; Denschlag, ohannes Hecker</creator><creatorcontrib>Wolf, Joschka ; Deiß, Markus ; Krükow, Artjom ; Tiemann, Eberhard ; Ruzic, Brandon P. ; Wang, Yujun ; D’Incao, José P. ; Julienne, Paul S. ; Denschlag, ohannes Hecker</creatorcontrib><description>Experimental investigation of chemical reactions with full quantum state resolution for all reactants and products has been a long-term challenge. Here we prepare an ultracold few-body quantum state of reactants and demonstrate state-to-state chemistry for the recombination of three spin-polarized ultracold rubidium (Rb) atoms to form a weakly bound Rb₂ molecule. The measured product distribution covers about 90% of the final products, and we are able to discriminate between product states with a level splitting as small as 20 megahertz multiplied by Planck’s constant. Furthermore, we formulate propensity rules for the distribution of products, and we develop a theoretical model that predicts many of our experimental observations. The scheme can readily be adapted to other species and opens a door to detailed investigations of inelastic or reactive processes.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aan8721</identifier><identifier>PMID: 29146811</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Atomic properties ; Beams (radiation) ; Chemical reactions ; Collision dynamics ; Molecular beams ; Organic Chemistry ; Quantum mechanics ; Quantum theory ; Recombination ; Rubidium ; Splitting</subject><ispartof>Science (American Association for the Advancement of Science), 2017-11, Vol.358 (6365), p.921-924</ispartof><rights>Copyright © 2017 by the American Association for the Advancement of Science</rights><rights>Copyright © 2017, American Association for the Advancement of Science.</rights><rights>Copyright © 2017, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-730eacb3d8c54a6fd083de0930e563d72e9313b775df70d6d67d677e81d9d4a33</citedby><cites>FETCH-LOGICAL-c425t-730eacb3d8c54a6fd083de0930e563d72e9313b775df70d6d67d677e81d9d4a33</cites><orcidid>0000-0003-4221-0463 ; 0000-0003-1984-4994 ; 0000-0003-2099-5941 ; 0000-0002-1647-1443 ; 0000-0002-4690-7738 ; 0000-0002-8353-0423 ; 0000-0002-5494-1442</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26400859$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26400859$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29146811$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wolf, Joschka</creatorcontrib><creatorcontrib>Deiß, Markus</creatorcontrib><creatorcontrib>Krükow, Artjom</creatorcontrib><creatorcontrib>Tiemann, Eberhard</creatorcontrib><creatorcontrib>Ruzic, Brandon P.</creatorcontrib><creatorcontrib>Wang, Yujun</creatorcontrib><creatorcontrib>D’Incao, José P.</creatorcontrib><creatorcontrib>Julienne, Paul S.</creatorcontrib><creatorcontrib>Denschlag, ohannes Hecker</creatorcontrib><title>State-to-state chemistry for three-body recombination in an ultracold rubidium gas</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Experimental investigation of chemical reactions with full quantum state resolution for all reactants and products has been a long-term challenge. Here we prepare an ultracold few-body quantum state of reactants and demonstrate state-to-state chemistry for the recombination of three spin-polarized ultracold rubidium (Rb) atoms to form a weakly bound Rb₂ molecule. The measured product distribution covers about 90% of the final products, and we are able to discriminate between product states with a level splitting as small as 20 megahertz multiplied by Planck’s constant. Furthermore, we formulate propensity rules for the distribution of products, and we develop a theoretical model that predicts many of our experimental observations. The scheme can readily be adapted to other species and opens a door to detailed investigations of inelastic or reactive processes.</description><subject>Atomic properties</subject><subject>Beams (radiation)</subject><subject>Chemical reactions</subject><subject>Collision dynamics</subject><subject>Molecular beams</subject><subject>Organic Chemistry</subject><subject>Quantum mechanics</subject><subject>Quantum theory</subject><subject>Recombination</subject><subject>Rubidium</subject><subject>Splitting</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkU1LxDAQhoMouq6ePSkBL16qk6ZNmqMsfoEg-HEuaTLVLm2jSXrYf2-WXRWEgRlmnnkZ3iHkhMElY7m4CqbD0eCl1mMlc7ZDZgxUmakc-C6ZAXCRVSDLA3IYwhIgzRTfJwe5YoWoGJuR55eoI2bRZWFdUPOBQxeiX9HWeRo_PGLWOLuiHo0bmm7UsXMj7UaqRzr10Wvjekv91HS2mwb6rsMR2Wt1H_B4m-fk7fbmdXGfPT7dPSyuHzNT5GXMJAfUpuG2MmWhRWuh4hZBpXYpuJU5Ks54I2VpWwlWWCFTSKyYVbbQnM_JxUb307uvCUOs0-UG-16P6KZQMyVEziUvVELP_6FLN_kxXZcoWQKwkheJutpQxrsQPLb1p-8G7Vc1g3ptd721u97anTbOtrpTM6D95X_8TcDpBliG6PzfXBQAVfrFNyJghww</recordid><startdate>20171117</startdate><enddate>20171117</enddate><creator>Wolf, Joschka</creator><creator>Deiß, Markus</creator><creator>Krükow, Artjom</creator><creator>Tiemann, Eberhard</creator><creator>Ruzic, Brandon P.</creator><creator>Wang, Yujun</creator><creator>D’Incao, José P.</creator><creator>Julienne, Paul S.</creator><creator>Denschlag, ohannes Hecker</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4221-0463</orcidid><orcidid>https://orcid.org/0000-0003-1984-4994</orcidid><orcidid>https://orcid.org/0000-0003-2099-5941</orcidid><orcidid>https://orcid.org/0000-0002-1647-1443</orcidid><orcidid>https://orcid.org/0000-0002-4690-7738</orcidid><orcidid>https://orcid.org/0000-0002-8353-0423</orcidid><orcidid>https://orcid.org/0000-0002-5494-1442</orcidid></search><sort><creationdate>20171117</creationdate><title>State-to-state chemistry for three-body recombination in an ultracold rubidium gas</title><author>Wolf, Joschka ; Deiß, Markus ; Krükow, Artjom ; Tiemann, Eberhard ; Ruzic, Brandon P. ; Wang, Yujun ; D’Incao, José P. ; Julienne, Paul S. ; Denschlag, ohannes Hecker</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-730eacb3d8c54a6fd083de0930e563d72e9313b775df70d6d67d677e81d9d4a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Atomic properties</topic><topic>Beams (radiation)</topic><topic>Chemical reactions</topic><topic>Collision dynamics</topic><topic>Molecular beams</topic><topic>Organic Chemistry</topic><topic>Quantum mechanics</topic><topic>Quantum theory</topic><topic>Recombination</topic><topic>Rubidium</topic><topic>Splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wolf, Joschka</creatorcontrib><creatorcontrib>Deiß, Markus</creatorcontrib><creatorcontrib>Krükow, Artjom</creatorcontrib><creatorcontrib>Tiemann, Eberhard</creatorcontrib><creatorcontrib>Ruzic, Brandon P.</creatorcontrib><creatorcontrib>Wang, Yujun</creatorcontrib><creatorcontrib>D’Incao, José P.</creatorcontrib><creatorcontrib>Julienne, Paul S.</creatorcontrib><creatorcontrib>Denschlag, ohannes Hecker</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wolf, Joschka</au><au>Deiß, Markus</au><au>Krükow, Artjom</au><au>Tiemann, Eberhard</au><au>Ruzic, Brandon P.</au><au>Wang, Yujun</au><au>D’Incao, José P.</au><au>Julienne, Paul S.</au><au>Denschlag, ohannes Hecker</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>State-to-state chemistry for three-body recombination in an ultracold rubidium gas</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2017-11-17</date><risdate>2017</risdate><volume>358</volume><issue>6365</issue><spage>921</spage><epage>924</epage><pages>921-924</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Experimental investigation of chemical reactions with full quantum state resolution for all reactants and products has been a long-term challenge. Here we prepare an ultracold few-body quantum state of reactants and demonstrate state-to-state chemistry for the recombination of three spin-polarized ultracold rubidium (Rb) atoms to form a weakly bound Rb₂ molecule. The measured product distribution covers about 90% of the final products, and we are able to discriminate between product states with a level splitting as small as 20 megahertz multiplied by Planck’s constant. Furthermore, we formulate propensity rules for the distribution of products, and we develop a theoretical model that predicts many of our experimental observations. The scheme can readily be adapted to other species and opens a door to detailed investigations of inelastic or reactive processes.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>29146811</pmid><doi>10.1126/science.aan8721</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-4221-0463</orcidid><orcidid>https://orcid.org/0000-0003-1984-4994</orcidid><orcidid>https://orcid.org/0000-0003-2099-5941</orcidid><orcidid>https://orcid.org/0000-0002-1647-1443</orcidid><orcidid>https://orcid.org/0000-0002-4690-7738</orcidid><orcidid>https://orcid.org/0000-0002-8353-0423</orcidid><orcidid>https://orcid.org/0000-0002-5494-1442</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2017-11, Vol.358 (6365), p.921-924
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_1966237349
source American Association for the Advancement of Science; Jstor Complete Legacy
subjects Atomic properties
Beams (radiation)
Chemical reactions
Collision dynamics
Molecular beams
Organic Chemistry
Quantum mechanics
Quantum theory
Recombination
Rubidium
Splitting
title State-to-state chemistry for three-body recombination in an ultracold rubidium gas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A15%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=State-to-state%20chemistry%20for%20three-body%20recombination%20in%20an%20ultracold%20rubidium%20gas&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Wolf,%20Joschka&rft.date=2017-11-17&rft.volume=358&rft.issue=6365&rft.spage=921&rft.epage=924&rft.pages=921-924&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aan8721&rft_dat=%3Cjstor_proqu%3E26400859%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1975001534&rft_id=info:pmid/29146811&rft_jstor_id=26400859&rfr_iscdi=true