State-to-state chemistry for three-body recombination in an ultracold rubidium gas
Experimental investigation of chemical reactions with full quantum state resolution for all reactants and products has been a long-term challenge. Here we prepare an ultracold few-body quantum state of reactants and demonstrate state-to-state chemistry for the recombination of three spin-polarized u...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2017-11, Vol.358 (6365), p.921-924 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 924 |
---|---|
container_issue | 6365 |
container_start_page | 921 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 358 |
creator | Wolf, Joschka Deiß, Markus Krükow, Artjom Tiemann, Eberhard Ruzic, Brandon P. Wang, Yujun D’Incao, José P. Julienne, Paul S. Denschlag, ohannes Hecker |
description | Experimental investigation of chemical reactions with full quantum state resolution for all reactants and products has been a long-term challenge. Here we prepare an ultracold few-body quantum state of reactants and demonstrate state-to-state chemistry for the recombination of three spin-polarized ultracold rubidium (Rb) atoms to form a weakly bound Rb₂ molecule. The measured product distribution covers about 90% of the final products, and we are able to discriminate between product states with a level splitting as small as 20 megahertz multiplied by Planck’s constant. Furthermore, we formulate propensity rules for the distribution of products, and we develop a theoretical model that predicts many of our experimental observations. The scheme can readily be adapted to other species and opens a door to detailed investigations of inelastic or reactive processes. |
doi_str_mv | 10.1126/science.aan8721 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1966237349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26400859</jstor_id><sourcerecordid>26400859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-730eacb3d8c54a6fd083de0930e563d72e9313b775df70d6d67d677e81d9d4a33</originalsourceid><addsrcrecordid>eNpdkU1LxDAQhoMouq6ePSkBL16qk6ZNmqMsfoEg-HEuaTLVLm2jSXrYf2-WXRWEgRlmnnkZ3iHkhMElY7m4CqbD0eCl1mMlc7ZDZgxUmakc-C6ZAXCRVSDLA3IYwhIgzRTfJwe5YoWoGJuR55eoI2bRZWFdUPOBQxeiX9HWeRo_PGLWOLuiHo0bmm7UsXMj7UaqRzr10Wvjekv91HS2mwb6rsMR2Wt1H_B4m-fk7fbmdXGfPT7dPSyuHzNT5GXMJAfUpuG2MmWhRWuh4hZBpXYpuJU5Ks54I2VpWwlWWCFTSKyYVbbQnM_JxUb307uvCUOs0-UG-16P6KZQMyVEziUvVELP_6FLN_kxXZcoWQKwkheJutpQxrsQPLb1p-8G7Vc1g3ptd721u97anTbOtrpTM6D95X_8TcDpBliG6PzfXBQAVfrFNyJghww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1975001534</pqid></control><display><type>article</type><title>State-to-state chemistry for three-body recombination in an ultracold rubidium gas</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><creator>Wolf, Joschka ; Deiß, Markus ; Krükow, Artjom ; Tiemann, Eberhard ; Ruzic, Brandon P. ; Wang, Yujun ; D’Incao, José P. ; Julienne, Paul S. ; Denschlag, ohannes Hecker</creator><creatorcontrib>Wolf, Joschka ; Deiß, Markus ; Krükow, Artjom ; Tiemann, Eberhard ; Ruzic, Brandon P. ; Wang, Yujun ; D’Incao, José P. ; Julienne, Paul S. ; Denschlag, ohannes Hecker</creatorcontrib><description>Experimental investigation of chemical reactions with full quantum state resolution for all reactants and products has been a long-term challenge. Here we prepare an ultracold few-body quantum state of reactants and demonstrate state-to-state chemistry for the recombination of three spin-polarized ultracold rubidium (Rb) atoms to form a weakly bound Rb₂ molecule. The measured product distribution covers about 90% of the final products, and we are able to discriminate between product states with a level splitting as small as 20 megahertz multiplied by Planck’s constant. Furthermore, we formulate propensity rules for the distribution of products, and we develop a theoretical model that predicts many of our experimental observations. The scheme can readily be adapted to other species and opens a door to detailed investigations of inelastic or reactive processes.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aan8721</identifier><identifier>PMID: 29146811</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Atomic properties ; Beams (radiation) ; Chemical reactions ; Collision dynamics ; Molecular beams ; Organic Chemistry ; Quantum mechanics ; Quantum theory ; Recombination ; Rubidium ; Splitting</subject><ispartof>Science (American Association for the Advancement of Science), 2017-11, Vol.358 (6365), p.921-924</ispartof><rights>Copyright © 2017 by the American Association for the Advancement of Science</rights><rights>Copyright © 2017, American Association for the Advancement of Science.</rights><rights>Copyright © 2017, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-730eacb3d8c54a6fd083de0930e563d72e9313b775df70d6d67d677e81d9d4a33</citedby><cites>FETCH-LOGICAL-c425t-730eacb3d8c54a6fd083de0930e563d72e9313b775df70d6d67d677e81d9d4a33</cites><orcidid>0000-0003-4221-0463 ; 0000-0003-1984-4994 ; 0000-0003-2099-5941 ; 0000-0002-1647-1443 ; 0000-0002-4690-7738 ; 0000-0002-8353-0423 ; 0000-0002-5494-1442</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26400859$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26400859$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29146811$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wolf, Joschka</creatorcontrib><creatorcontrib>Deiß, Markus</creatorcontrib><creatorcontrib>Krükow, Artjom</creatorcontrib><creatorcontrib>Tiemann, Eberhard</creatorcontrib><creatorcontrib>Ruzic, Brandon P.</creatorcontrib><creatorcontrib>Wang, Yujun</creatorcontrib><creatorcontrib>D’Incao, José P.</creatorcontrib><creatorcontrib>Julienne, Paul S.</creatorcontrib><creatorcontrib>Denschlag, ohannes Hecker</creatorcontrib><title>State-to-state chemistry for three-body recombination in an ultracold rubidium gas</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Experimental investigation of chemical reactions with full quantum state resolution for all reactants and products has been a long-term challenge. Here we prepare an ultracold few-body quantum state of reactants and demonstrate state-to-state chemistry for the recombination of three spin-polarized ultracold rubidium (Rb) atoms to form a weakly bound Rb₂ molecule. The measured product distribution covers about 90% of the final products, and we are able to discriminate between product states with a level splitting as small as 20 megahertz multiplied by Planck’s constant. Furthermore, we formulate propensity rules for the distribution of products, and we develop a theoretical model that predicts many of our experimental observations. The scheme can readily be adapted to other species and opens a door to detailed investigations of inelastic or reactive processes.</description><subject>Atomic properties</subject><subject>Beams (radiation)</subject><subject>Chemical reactions</subject><subject>Collision dynamics</subject><subject>Molecular beams</subject><subject>Organic Chemistry</subject><subject>Quantum mechanics</subject><subject>Quantum theory</subject><subject>Recombination</subject><subject>Rubidium</subject><subject>Splitting</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkU1LxDAQhoMouq6ePSkBL16qk6ZNmqMsfoEg-HEuaTLVLm2jSXrYf2-WXRWEgRlmnnkZ3iHkhMElY7m4CqbD0eCl1mMlc7ZDZgxUmakc-C6ZAXCRVSDLA3IYwhIgzRTfJwe5YoWoGJuR55eoI2bRZWFdUPOBQxeiX9HWeRo_PGLWOLuiHo0bmm7UsXMj7UaqRzr10Wvjekv91HS2mwb6rsMR2Wt1H_B4m-fk7fbmdXGfPT7dPSyuHzNT5GXMJAfUpuG2MmWhRWuh4hZBpXYpuJU5Ks54I2VpWwlWWCFTSKyYVbbQnM_JxUb307uvCUOs0-UG-16P6KZQMyVEziUvVELP_6FLN_kxXZcoWQKwkheJutpQxrsQPLb1p-8G7Vc1g3ptd721u97anTbOtrpTM6D95X_8TcDpBliG6PzfXBQAVfrFNyJghww</recordid><startdate>20171117</startdate><enddate>20171117</enddate><creator>Wolf, Joschka</creator><creator>Deiß, Markus</creator><creator>Krükow, Artjom</creator><creator>Tiemann, Eberhard</creator><creator>Ruzic, Brandon P.</creator><creator>Wang, Yujun</creator><creator>D’Incao, José P.</creator><creator>Julienne, Paul S.</creator><creator>Denschlag, ohannes Hecker</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4221-0463</orcidid><orcidid>https://orcid.org/0000-0003-1984-4994</orcidid><orcidid>https://orcid.org/0000-0003-2099-5941</orcidid><orcidid>https://orcid.org/0000-0002-1647-1443</orcidid><orcidid>https://orcid.org/0000-0002-4690-7738</orcidid><orcidid>https://orcid.org/0000-0002-8353-0423</orcidid><orcidid>https://orcid.org/0000-0002-5494-1442</orcidid></search><sort><creationdate>20171117</creationdate><title>State-to-state chemistry for three-body recombination in an ultracold rubidium gas</title><author>Wolf, Joschka ; Deiß, Markus ; Krükow, Artjom ; Tiemann, Eberhard ; Ruzic, Brandon P. ; Wang, Yujun ; D’Incao, José P. ; Julienne, Paul S. ; Denschlag, ohannes Hecker</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-730eacb3d8c54a6fd083de0930e563d72e9313b775df70d6d67d677e81d9d4a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Atomic properties</topic><topic>Beams (radiation)</topic><topic>Chemical reactions</topic><topic>Collision dynamics</topic><topic>Molecular beams</topic><topic>Organic Chemistry</topic><topic>Quantum mechanics</topic><topic>Quantum theory</topic><topic>Recombination</topic><topic>Rubidium</topic><topic>Splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wolf, Joschka</creatorcontrib><creatorcontrib>Deiß, Markus</creatorcontrib><creatorcontrib>Krükow, Artjom</creatorcontrib><creatorcontrib>Tiemann, Eberhard</creatorcontrib><creatorcontrib>Ruzic, Brandon P.</creatorcontrib><creatorcontrib>Wang, Yujun</creatorcontrib><creatorcontrib>D’Incao, José P.</creatorcontrib><creatorcontrib>Julienne, Paul S.</creatorcontrib><creatorcontrib>Denschlag, ohannes Hecker</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wolf, Joschka</au><au>Deiß, Markus</au><au>Krükow, Artjom</au><au>Tiemann, Eberhard</au><au>Ruzic, Brandon P.</au><au>Wang, Yujun</au><au>D’Incao, José P.</au><au>Julienne, Paul S.</au><au>Denschlag, ohannes Hecker</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>State-to-state chemistry for three-body recombination in an ultracold rubidium gas</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2017-11-17</date><risdate>2017</risdate><volume>358</volume><issue>6365</issue><spage>921</spage><epage>924</epage><pages>921-924</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Experimental investigation of chemical reactions with full quantum state resolution for all reactants and products has been a long-term challenge. Here we prepare an ultracold few-body quantum state of reactants and demonstrate state-to-state chemistry for the recombination of three spin-polarized ultracold rubidium (Rb) atoms to form a weakly bound Rb₂ molecule. The measured product distribution covers about 90% of the final products, and we are able to discriminate between product states with a level splitting as small as 20 megahertz multiplied by Planck’s constant. Furthermore, we formulate propensity rules for the distribution of products, and we develop a theoretical model that predicts many of our experimental observations. The scheme can readily be adapted to other species and opens a door to detailed investigations of inelastic or reactive processes.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>29146811</pmid><doi>10.1126/science.aan8721</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-4221-0463</orcidid><orcidid>https://orcid.org/0000-0003-1984-4994</orcidid><orcidid>https://orcid.org/0000-0003-2099-5941</orcidid><orcidid>https://orcid.org/0000-0002-1647-1443</orcidid><orcidid>https://orcid.org/0000-0002-4690-7738</orcidid><orcidid>https://orcid.org/0000-0002-8353-0423</orcidid><orcidid>https://orcid.org/0000-0002-5494-1442</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2017-11, Vol.358 (6365), p.921-924 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_1966237349 |
source | American Association for the Advancement of Science; Jstor Complete Legacy |
subjects | Atomic properties Beams (radiation) Chemical reactions Collision dynamics Molecular beams Organic Chemistry Quantum mechanics Quantum theory Recombination Rubidium Splitting |
title | State-to-state chemistry for three-body recombination in an ultracold rubidium gas |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A15%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=State-to-state%20chemistry%20for%20three-body%20recombination%20in%20an%20ultracold%20rubidium%20gas&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Wolf,%20Joschka&rft.date=2017-11-17&rft.volume=358&rft.issue=6365&rft.spage=921&rft.epage=924&rft.pages=921-924&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aan8721&rft_dat=%3Cjstor_proqu%3E26400859%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1975001534&rft_id=info:pmid/29146811&rft_jstor_id=26400859&rfr_iscdi=true |