State-to-state chemistry for three-body recombination in an ultracold rubidium gas

Experimental investigation of chemical reactions with full quantum state resolution for all reactants and products has been a long-term challenge. Here we prepare an ultracold few-body quantum state of reactants and demonstrate state-to-state chemistry for the recombination of three spin-polarized u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2017-11, Vol.358 (6365), p.921-924
Hauptverfasser: Wolf, Joschka, Deiß, Markus, Krükow, Artjom, Tiemann, Eberhard, Ruzic, Brandon P., Wang, Yujun, D’Incao, José P., Julienne, Paul S., Denschlag, ohannes Hecker
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Experimental investigation of chemical reactions with full quantum state resolution for all reactants and products has been a long-term challenge. Here we prepare an ultracold few-body quantum state of reactants and demonstrate state-to-state chemistry for the recombination of three spin-polarized ultracold rubidium (Rb) atoms to form a weakly bound Rb₂ molecule. The measured product distribution covers about 90% of the final products, and we are able to discriminate between product states with a level splitting as small as 20 megahertz multiplied by Planck’s constant. Furthermore, we formulate propensity rules for the distribution of products, and we develop a theoretical model that predicts many of our experimental observations. The scheme can readily be adapted to other species and opens a door to detailed investigations of inelastic or reactive processes.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.aan8721