Structure of the yeast spliceosomal postcatalytic P complex
The spliceosome undergoes dramatic changes in a splicing cycle. Structures of B, Bact, C, C*, and intron lariat spliceosome complexes revealed mechanisms of 5′–splice site (ss) recognition, branching, and intron release, but lacked information on 3′-ss recognition, exon ligation, and exon release. H...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2017-12, Vol.358 (6368), p.1278-1283 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The spliceosome undergoes dramatic changes in a splicing cycle. Structures of B, Bact, C, C*, and intron lariat spliceosome complexes revealed mechanisms of 5′–splice site (ss) recognition, branching, and intron release, but lacked information on 3′-ss recognition, exon ligation, and exon release. Here we report a cryo–electron microscopy structure of the postcatalytic P complex at 3.3-angstrom resolution, revealing that the 3′ ss is mainly recognized through non–Watson-Crick base pairing with the 5′ ss and branch point. Furthermore, one or more unidentified proteins become stably associated with the P complex, securing the 3′ exon and potentially regulating activity of the helicase Prp22. Prp22 binds nucleotides 15 to 21 in the 3′ exon, enabling it to pull the intron-exon or ligated exons in a 3′ to 5′ direction to achieve 3′-ss proofreading or exon release, respectively. |
---|---|
ISSN: | 0036-8075 1095-9203 1095-9203 |
DOI: | 10.1126/science.aar3462 |