Pyrrolidinyl PNA polypyrrole/silver nanofoam electrode as a novel label-free electrochemical miRNA-21 biosensor

A label-free electrochemical miRNA biosensor was developed based on a pyrrolidinyl peptide nucleic acid (acpcPNA)/polypyrrole (PPy)/silver nanofoam (AgNF) modified electrode. The AgNF was electrodeposited as redox indicator on a gold electrode, which was then functionalized with an electropolymerize...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biosensors & bioelectronics 2018-04, Vol.102, p.217-225
Hauptverfasser: Kangkamano, Tawatchai, Numnuam, Apon, Limbut, Warakorn, Kanatharana, Proespichaya, Vilaivan, Tirayut, Thavarungkul, Panote
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A label-free electrochemical miRNA biosensor was developed based on a pyrrolidinyl peptide nucleic acid (acpcPNA)/polypyrrole (PPy)/silver nanofoam (AgNF) modified electrode. The AgNF was electrodeposited as redox indicator on a gold electrode, which was then functionalized with an electropolymerized layer of PPy, a conducting polymer, to immobilize the PNA probes. The fabrication process was investigated by electrochemical impedance spectroscopy. The biosensor was used to detect miRNA-21, a biomarker abnormally expressed in most cancers. The signal was monitored by the change in current of the AgNF redox reaction before and after hybridization using cyclic voltammetry. Two PNA probe lengths were investigated and the longer probe exhibited a better performance. Nucleotide overhangs on the electrode side affected the signal more than overhangs on the solution side due to the greater insulation of the sensing surface. Under optimal conditions, the electrochemical signal was proportional to miRNA-21 concentrations between 0.20fM and 1.0nM, with a very low detection limit of 0.20fM. The biosensor showed a high specificity which could discriminate between complementary, single-, doubled-base mismatched, and non-complementary targets. Three out of the seven tested plasma samples provided detectable concentrations (63 ± 4, 111 ± 4 and 164 ± 7fM). The sensor also showed good recoveries (81–119%). The results indicated the possibilities of this biosensor for analysis without RNA extraction and/or amplification, making the sensor potentially useful for both the prognosis and diagnosis of cancer in clinical application. •acpcPNA probe was employed for a label-free electrochemical miRNA-21 biosensor.•Silver nanofoam was used as stationary redox indicator and platform for probe immobilization.•The acpcPNA biosensor showed potential for DNA, RNA and RNA mimic detection.•The sensor provided a simple direct detection of miRNA-21 in plasma sample.•The sensor would be potentially useful for miRNAs detection in clinical application.
ISSN:0956-5663
1873-4235
DOI:10.1016/j.bios.2017.11.024