A mixture of five endocrine-disrupting chemicals modulates concentrations of bisphenol A and estradiol in mice
Most people in developed countries are exposed to multiple endocrine-disrupting synthetic chemicals. We previously showed that a single dose of triclosan, tetrabromobisphenol A (TBBPA), butyl paraben, propyl paraben, or di(2-ethylhexyl) phthalate elevated concentrations of bisphenol A (BPA) in mice....
Gespeichert in:
Veröffentlicht in: | Chemosphere (Oxford) 2018-02, Vol.193, p.321-328 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Most people in developed countries are exposed to multiple endocrine-disrupting synthetic chemicals. We previously showed that a single dose of triclosan, tetrabromobisphenol A (TBBPA), butyl paraben, propyl paraben, or di(2-ethylhexyl) phthalate elevated concentrations of bisphenol A (BPA) in mice. Here we investigated whether concurrent exposure to lower doses of these five chemicals could modulate concentrations of bisphenol A (BPA) or the natural estrogen, 17β-estradiol (E2). CF1 mice were injected subcutaneously with 0.1 or 0.5 mg of one chemical, or a 0.5 mg mixture containing 0.1 mg of each of all five chemicals, then given dietary 50 μg kg−114C-BPA. The mixture elevated 14C-BPA concentrations in the lungs, muscle, uterus, ovaries, kidney, and blood serum of female mice. When administered alone, triclosan and TBBPA elevated 14C-BPA concentrations in the uterus, ovaries, and blood serum. In another experiment, CF1 mice were injected subcutaneously with the 0.5 mg mixture containing 0.1 mg of all five chemicals, then E2 was measured in urine 2–12 h later. The mixture elevated E2 at 8 h after injection in female mice. No treatments significantly altered concentrations of 14C-BPA or E2 in male mice. These data show that these endocrine-disrupting chemicals interact in vivo, magnifying one another's effects, consistent with inhibition of enzymes that are critical for estrogen metabolism. These findings highlight the importance of considering exposure to multiple chemicals when assessing health outcomes and determining regulatory exposure limits.
•We studied interactions among five toxicants, 14C-BPA, and natural estradiol.•Female and male mice were given a single dietary dose of 14C-BPA.•Pre-treatment with a mixture of five toxicants elevated 14C-BPA in female mice.•In a separate experiment, the same mixture elevated urinary estradiol in females.•Toxicants may compete for enzymes that are critical for BPA and estrogen metabolism. |
---|---|
ISSN: | 0045-6535 1879-1298 |
DOI: | 10.1016/j.chemosphere.2017.11.030 |